Ultrahigh-temperature metamorphism and near-isobaric cooling of garnet-orthopyroxene granulite xenoliths in the Sancheong anorthosite, Yeongnam Massif, Korea

YUYOUNG LEE¹, MOONSUP CHO², JEONGMIN KIM¹ AND YOUN-JOONG JEONG¹

¹Korea Basic Science Institute ²Seoul National University Presenting Author: yuyoung2@kbsi.re.kr

Elevated heat flow associated with mafic magmatism in an accretionary orogen has often been proposed as a driving mechanism for ultrahigh-temperature (UHT) metamorphism. The Sancheong-Hadong anorthosite complex, situated in the southern Yeongnam Massif, Korea, is renowned for the Paleoproterozoic (ca. 1.87-1.86 Ga) emplacement in association with a variety of granulite-facies gneisses. Here, we present new findings on the UHT metamorphism and near-isobaric cooling of garnetorthopyroxene granulite xenoliths entrained in the Sancheong anorthosite. These xenoliths record evidence for in-situ melting typified by leucosomes containing peritectic garnet and orthopyroxene. The presence of garnet coronas at the interface between orthopyroxene and plagioclase in the granulite is attributed to near-isobaric cooling. Phase equilibria modelling of the granulite reveals peak metamorphic conditions reaching 930-950 °C and ~8 kbar, followed by near-isobaric cooling and subsequent melt crystallization at 770-790 °C and ~6.7 kbar. Such a UHT condition of granulite is corroborated by ~886-894 °C estimated from the Ti-in-zircon thermometry. SHRIMP U-Pb analyses of zircon from two granulites and one leucosome vielded consistent ²⁰⁷Pb/²⁰⁶Pb ages of ~1860 Ma. In addition, U(-Th)-Pb analyses of monazite in two granulites and one leucosome vielded 207 Pb/ 206 Pb ages of 1864 ± 9 Ma. 1862 ± 12 Ma, and 1860 ± 13 Ma, respectively. These results indicate a (near-)complete resetting of the U-Pb system at ~1860 Ma during the UHT event. The oxygen isotopic compositions of zircon in granulites have δ^{18} O value of 8.15 ‰, whereas those of zircon rim in the leucosome show a reduction to 7.67 ‰. The latter closely aligns with 7.52 ‰ estimated from monazite in the granulites; in contrast, the monazite in the leucosome records a slightly lower δ^{18} O value of 6.57 ‰. Such a trend imply that the δ^{18} O value is homogenized during the in-situ melting at the UHT condition and undergoes a decrease during melt crystallization. Our results suggest that lower crustal granulite in the southern Yeongnam Massif has most likely undergone ~1.86 Ga UHT metamorphism in association with the anorthosite magmatism. The near-isobaric cooling path of granulites is further accounted for by extensional tectonics prominent at the late stage of the Paleoproterozoic hot orogenesis.