Repeated occurrences of marine anoxia during highly oxygenated Late Paleozoic icehouse

JITAO CHEN¹, SHIHAN LI², ISABEL P MONTAÑEZ³, SHUANG ZHANG², TERRY ISSON⁴, TAIS W. DAHL⁵, NOAH J. PLANAVSKY⁶, FEIFEI ZHANG⁷, XIANGDONG WANG⁸ AND SHUZHONG SHEN⁷

¹Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences
²Texas A&M University
³University of California, Davis
⁴University of Waikato (Tauranga)
⁵University of Copenhagen
⁶Yale University

⁷School of Earth Sciences and Engineering, Nanjing University
 ⁸State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University

Presenting Author: jtchen@nigpas.ac.cn

Atmospheric oxygen concentration potentially reached its highest level of Earth history during the late Paleozoic icehouse (~360-260 Ma). Yet, abrupt global warming still caused a distinct marine anoxic event, a phenomenon often characteristic of the greenhouse climate state. Here, we present a high temporal resolution record of carbonate uranium isotopes (²³⁸U/²³⁵U, denoted as $\delta^{238}U_{carb}$, a proxy for marine oxygenation state) from a continuous carbonate succession in South China to reconstruct the long-term marine anoxia landscape during the deep glacial of the late Paleozoic icehouse (310-290 Ma). We report a generally long-term increase in $\delta^{238}U_{carb}$ upon which repeated, short-term (~1 Myr) negative excursions in $\delta^{238}U_{carb}$ occur, coincident with negative C isotopic excursions and increases in atmospheric CO₂. To quantitatively explore the interplay among marine anoxia, carbon cycle perturbation, and climate evolution at this time, we refine a previously established CPU biogeochemical model and employ Bayesian inverse methods to rigorously constrain model parametersThe modeling outcomes, integrated with proxy data, suggest a long-term atmosphere and seafloor oxygenation driven by enhanced marine organic carbon burial. The study also highlights that episodic pulses of C emission can cause repeated occurrences of marine anoxia even under more oxygenated conditions than today.