Experimental Assessment of Basalt Dissolution Rates under Shallow Aqueous Carbon Dioxide Sequestration P_{CO2} and Temperatures

ROBERT W SMITH^{1,2}, GHANASHYAM NEUPANE^{3,4}, RAM KUMAR^{2,3}, TREVOR A ATKINSON^{2,3}, PEJMAN RASOULI⁵ AND TRAVIS MCLING^{2,3}

¹University of Idaho
²Center for Advanced Energy Studies
³Idaho National Laboratory
⁴INL/Center for Advanced Energy Studies
⁵Chevron Technology Company
Presenting Author: smithbob@uidaho.edu

Sequestration by CO_2 mineralization in basalt formations is a greenhouse gas emission mitigation strategy. An advantage of this strategy is that CO_2 injected as a free phase or aqueous phase reacts with the basalt immobilizing CO_2 as carbonate minerals. Free phase injections are limited to pressures greater than the critical pressure of CO_2 whereas aqueous injections allow for shallower depths limited by CO_2 solubility under formation temperatures, pressures, and geochemical conditions. Pilot/field-scale demonstrations of injected supercritical CO_2 (Wallula Basalt Pilot Project, SE Washington, USA) or aqueous CO_2 (CARBFIX, Iceland) show that CO_2 rapidly reacts with basalts to form carbonate minerals over relatively short time frames.

We are planning to conduct a aqueous CO₂ injection into the basalts of the Eastern Snake River Plain (ESRP), Idaho USA. In preparation, we conducted twelve, 60-plus-day long batch laboratory water-rock-CO₂ experiments at temperatures of 21 and 40°C, P_{CO2} of 15 and 45 bars (1.5 to 5.5 wt.% CO2), and crushed basalt with effective gain diameters of 0.22 and 0.57 mm to assess the dissolution rates of ESRP basalt. Initial silica release rates were calculated from sampling-corrected experimental concentration vs. time profiles. Essentially no difference in rates were observed between experiments conducted under the same P-T conditions but with different grains sizes. This result is consistent with measured B.E.T. surface areas which differed from each other by less than 4%. Rates at 40°C and 45 bars were 1.8±0.11 and 1.3±0.06 times faster than for 21°C and 15 bars experiments, respectively. Using B.E.T. surface area normalized initial silica release rates, an empirical rate law of the form $r=A \cdot e^{-Ea/RT} \cdot (m_{CO2})^n$ was derived where Ea is the activation energy (42.5±5.0 kJ/mol) and n is the reaction order with respect to CO2 molality. This rate law predicts that at constant m_{CO2} the silica release rate is 2.9 times faster at 40 compared to 21°C and reflects the opposite effects of increasing temperature on basalt reaction rates (increasing) and CO₂ solubilities (decreasing). On going activities include assessment of release rates for other elements and considerations of the observed time dependency on rates.