Characterizing the clumped isotope composition of microbially-produced H₂

NOAM LOTEM¹, JARED LEADBETTER¹, ELLIOTT P. MUELLER¹, NAMI KITCHEN¹, ITAY HALEVY² AND JOHN EILER¹

¹California Institute of Technology

²Weizmann Institute of Science

Presenting Author: nlotem@caltech.edu

Discerning microbially produced H₂ from abiotic H₂ could enhance our ability to identify H2 sources in the search of naturally occurring H₂ as an energy resource, and to study microbial modifications of H₂ stored in engineered crustal reservoirs. The molecular average deuterium content of H₂ has been used previously for identifying its sources and sinks, and recent studies suggest the multiply-substituted ('clumped') isotopologue, D2, could provide additional constraints on molecular formation mechanisms and temperatures [1, 2]. Here we present the first clumped isotope measurements of biologically produced H₂. We measured the molecular average and clumped isotope composition of H₂ formed during fermentation in batch cultures of Clostridium pasteurianum; the H₂ was purified cryogenically and measured by the Thermo Fisher 253 Ultra high resolution IRMS. Our results show that microbially-produced H₂ expresses a consistent deviation from the equilibrium fractionation during exponential growth, for both the clumped and molecular average isotopic compositions, whereas during the stationary phase it conforms to nearequilibrium isotopic compositions at the culturing temperature. The specific combination of clumped and molecular average D contents we observed during the growth phase differs from equilibrium at any temperature and from simple kinetic fractionations such as diffusion; we suggest it may be a biologically regulated kinetic isotope signature unique to microbial growth. The shift from kinetic to equilibrium controls of isotopic composition moving from growth to stationary phase is consistent with theoretical calculation of the reversibility of the H₂ production reaction, because H₂ concentrations increase over growth, reaching and maintaining high levels during the stationary phase. It is plausible that in the environment, under lower H₂ concentrations, we would observe the distinctive, kinetic endmember during biological H₂ production. Since previous studies demonstrate that the clumped isotope composition of H₂ from natural reservoirs and hydrothermal vents reflects equilibrium values [2], the deviation from equilibrium during microbial growth can potentially be used to detect biological sources of subsurface H₂.

[1] Popa, M.E. et al. (2019) Rapid Communications in Mass Spectrometry 33(3), 239-251.

[2] Mangenot, X. et al. (2023), Chemical Geology 621, 121278.