A detailed investigation of postcrystallization O-isotope exchange in highly damaged U-rich low-δ¹⁸O Paleoproterozoic zircon via combination of bulk, in-situ measurements, and high-precision U-Pb geochronology

DAVID ZAKHAROV¹, ANDRÉ NAVIN PAUL², DYLAN COLON², MARIA OVTCHAROVA² AND BENITA PUTLITZ³

¹Western Michigan University ²Université de Genève ³University of Lausanne

Presenting Author: david.zakharov@wmich.edu

Low-δ¹⁸O magmatic-hydrothermal systems form via exchange reactions between silicate rocks and local meteoric precipitation. Since the exchanged rocks record the isotope composition of precipitation, such systems of the Precambrian age represent a novel quantitative archive of near-surface conditions. Here we focus on the application of O-isotope geochemistry and U-Pb of zircon that crystallized geochronology nearcontemporaneously with the O-isotope exchange. In this presentation, we show new data on a zircon extracted from a low-δ18O hydrothermally altered rock of a Neoarchean system (Keivy Complex, Kola Craton) that has bulk δ^{18} O value of -9 ‰. Triple O-isotope approach indicates that meteoric waters had the initial δ^{18} O of ca. -18 ‰. The in-situ O-isotope measurements of zircon from the most exchanged lithologies conducted by a secondary ion mass spectrometer reveal domains with $\delta^{18}O$ as low as -8 ‰, while bulk fluorination measurements of multicrystal aliquots yield values between -6 and -4 ‰. A positive correlation between the ¹⁶OH/¹⁶O ratio and ¹⁸O/¹⁶O measured by SIMS allows to constrain the lowest values $\delta^{18}O = -8$ ‰ to the most preserved domains. Cathodoluminescence and electron microprobe measurements reveal the highly damaged textures of this zircon and mobilization of trace elements (Y, Hf, Yb). The U and Th concentrations of these damaged zircon reach 4000 ppm indicating that a significant radioactive damage had accumulated over time explaining the highly variable O-isotope values measured in situ and in bulk.

To understand the nature and timing of secondary O-isotope exchange, multiple zircon crystals were subjected to annealing, stepwise chemical abrasion and subsequent high-precision ID-TIMS dating. The resultant analyses are discordant, yielding the upper intercept date of 1784.5 ± 0.5 Ma, which is close in time to the locally established metamorphic events. The discordance notably correlates with the measured ${}^{16}\text{OH}/{}^{16}\text{O}$ and ${}^{18}\text{O}/{}^{16}\text{O}$ values in situ. That indicates that the increase in the ${}^{16}\text{OH}/{}^{16}\text{O}$ and ${}^{18}\text{O}/{}^{16}\text{O}$ values trace the Pb-loss from the damaged domains. The crystals with the lowest ${}^{16}\text{OH}/{}^{16}\text{O}$ and ${}^{18}\text{O}/{}^{16}\text{O}$ yield over-

concordant dates (a.k.a. negatively discordant) documenting a potential counter part of the Pb-loss/U-gain. This is the first documented evidence of secondary O-isotope exchange that is traced by high-precision U-Pb ages.