Microscale iron and sulfur isotope signatures of early diagenetic pyrite formation

MR. VIRGIL PASQUIER, PHD¹, JOHANNA MARIN-CARBONNE² AND ITAY HALEVY³

¹University of Lausanne

²Université de Lausanne,

³Weizmann Institute of Science

Presenting Author: virgil.pasquier@unil.ch

Given the application of sedimentary pyrite iron and sulfur isotope compositions ($\delta^{56}Fe_{PYR}$, $\delta^{34}S_{PYR}$, $\Delta^{33}S_{PYR}$) to reconstruct global ocean properties and the evolving oxidation state of Earth's surface, diagenetic impacts on pyrite-based proxies must be explored. Along with auxiliary petrographic and porewater data, we present coupled microscale δ^{56} Fe_{PVR} δ^{34} S_{PVR} Δ^{33} S_{PVR} in accumulating sediments on the oxic margin of the Black Sea. The coevolution of microscale $\delta^{56} Fe_{PYR} \delta^{34} S_{PYR} \Delta^{33} S_{PYR}$ distributions provides insight into the effect of porewater S species production, consumption, and buildup on the pyritization pathways. "Background" pyrite is characterized by low δ^{56} Fe_{PYR} and $\delta^{34}S_{PVR}$ values consistent with microbially-mediated iron and sulfate reduction and iron (oxyhydr)oxide sulfidization at low sulfide to iron ratios. In contrast, "sulfidic zone" pyrite displays distinct late-stage morphologies and higher δ^{56} Fe_{PVR} and δ^{34} S_{PVR}, which reflect sulfide pooling at the sulfate-methane transition zone and direct sulfidization of residual iron phases. We propose that coupled δ^{56} Fe_{PVR} δ^{34} S_{PVR} Δ^{33} S_{PVR} distributions constrain the pyritization pathway and microbial and physico-chemical aspects of the depositional environment.