The wonders of green rust: A not so random journey around the periodic table

EDWARD J O'LOUGHLIN¹, MAXIM I BOYANOV¹, DAVID BURRIS², CLAYTON JOHNSON³, ANTHONY KILBER⁴, SHELLY KELLY⁵, DREW E LATTA⁶, BHOOPESH MISHRA⁷, TIMOTHY PASAKARNIS⁸, MICHELLE M SCHERER⁶, SEN YAN⁹ AND KENNETH M. KEMNER¹

¹Argonne National Laboratory
²Crooked Creek Environmental, LLC
³Fauske and Associates
⁴Illinois State Geological Survey
⁵Advanced Photon Source
⁶The University of Iowa
⁷Illinois Institute of Technology
⁸Cape Cod Commission
⁹China University of Geosciences-Wuhan Presenting Author: oloughlin@anl.gov

Green rusts are mixed Fe(II)/Fe(III) layered double hydroxides (LDHs) that typically form under weakly acidic to alkaline conditions in suboxic and anoxic environments. They have been identified as products of the microbial bioreduction of Fe(III) oxides, both abiotic and microbially induced corrosion of iron and steel, the abiotic reductive dissolution of Fe(III) oxides by Fe(II), and the abiotic and microbially-mediated oxidation of ferrous iron species, and as such are key intermediates in many redox transformations controlling the biogeochemical cycling of iron. Green rusts are highly redox active and have been shown to be facile electron donors for the reduction of many contaminants various of concern including chlorinated solvents, nitroaromatics, azo dyes, toxic metals, metalloids, and radionuclides, suggesting that green rusts may be highly reactive reductants in natural and engineered terrestrial and aquatic environments. This talk summarizes over 25 years of research examining the reduction of chlorinated solvents (chlorinated methanes, ethanes, and ethenes), transition metals (V(V), Cu(II), Ag(I), Re(VII), Au(III), and Hg(II)), metalloids (Te(VI) and Te(IV)), and U(VI) by green rust.