Dissolved Rhenium as a tracer of oxidation of petrogenic carbon in the Ganga (Hooghly) River catchment, India

RUPAK SAMADDER¹, TARUN K. DALAI¹, DAMODARARAO KARRI² AND SANJEEV KUMAR³

¹Indian Institute of Science Education and Research Kolkata
²Indian Institute of Tropical Meteorology
³Physical Research Laboratory
Presenting Author: rupaksamadder@gmail.com

Oxidation of petrogenic organic carbon (OC_{petro}) counters CO_2 sink via organic carbon (C_{org}) burial and silicate weathering in the long-term carbon cycle. Since the time dissolved rhenium (Re_{diss}) in the rivers has been documented to be a robust tracer of OC_{petro} oxidation^[1], studies have focused on estimating CO_2 flux via oxidative weathering of OC_{petro} from the catchments using [Re/OC]_{petro} ratio^[2]. We investigated the river water, suspended (SPM), and bed sediments of the largest river system of India, the Ganga (Hooghly), at its outflow before the mixing zone.

[Re]_{diss} varies seasonally, with maximum concentrations during the dry periods compared to the wet periods. The comparison of Re/ΣCations* (* denotes corrected for cyclic contributions) ratios between river waters and major lithologies (silicates and carbonates) reveals that major lithologies are insignificant sources of Re_{diss}. [Re]_{diss} depicts inverse correlation with ΣCations* and [HCO₃⁻]. However, the relative decrease of [Re]_{diss} with ΣCations* or [HCO₃⁻] is smaller in dry period than in wet period. These observations together indicate that supply of Re from major lithologies is lower in the wet periods. Re/Al ratios show a positive correlation with C_{org}/Al and an inverse correlation with d¹³C_{org} in bed sediment and SPM. These observations indicate that (i) Re is associated with organic phases and (ii) the OC_{petro}, presumably having a lower d¹³C_{org}^{[2],[3],[4]}, is the major host of Re.

Calculations based on reported range of fractions of OC_{petro} being oxidized in the Ganga $Basin^{[4]}$ and $[OC/Re]_{petro}^{[1]}$ suggest that Re contributions from petrogenic organic matter alone can sustain the measured levels of $[Re]_{diss}$. The results of this study reinforce the idea that Re_{diss} can be used as a robust tracer for OC_{petro} oxidation.

References

[1] Dalai et al. (2002), *Geochimica et Cosmochimica Acta* 66, 29-43.

[2] Horan et al. (2019), American Journal of Science 319, 473–499.

[3] Hilton et al. (2015), Nature 524, 84-87.

[4] Galy et al. (2008), Science 322 (5903), 943-945.