Variation in seawater [Ca²⁺] as a major driver for Na, K, S, and B incorporation in inorganic calcites

JOJI UCHIKAWA¹, SZABINA KARANCZ², MARIETTE WOLTHERS³, LAURA PACHO SAMPEDRO⁴, DUSTIN T HARPER⁵, DONALD E PENMAN⁶, LENNART J DE NOOIJER², GERT-JAN REICHART⁷ AND ZEEBE RICHARD⁸

¹Dept. of Oceanography, Univ. of Hawaii
²NIOZ Royal Netherlands Institute for Sea Research
³Utrecht University
⁴NIOZ-Royal Netherlands Institute for Sea Research
⁵University of Utah
⁶Utah State University
⁷Royal Netherlands Institute for Sea Research (NIOZ)
⁸University of Hawaii
Presenting Author: uchikawa@hawaii.edu

In this study, inorganic calcite samples grown in simplified (Mg-free) artificial seawater¹ were utilized to examine the patterns of Na, K, S, and B incorporation (measured as Na/Ca, K/Ca, S/Ca, and B/Ca ratios, respectively) as a function of changes in pH, [DIC], $[Ca^{2+}]$ of the artificial seawater, and hence calcite precipitation kinetics. The samples were grown in 5 separate series of precipitation experiments, which involved (#1) changing pH only, (#2) changing [DIC] only, (#3) changing $[Ca^{2+}]$ only, (#4) changing pH and $[Ca^{2+}]$ concurrently but to opposing directions, and (#5) changing [DIC] and $[Ca^{2+}]$ concurrently but to opposing directions, from the same baseline condition. The series #1 to #3 led to changes in the degree of calcite saturation and the rate of precipitation "*R*", whereas the series #4 and #5 were designed to perform calcite precipitation at a near-constant *R*.

Our new data show positive linear trends with $[Ca^{2+}]$ of the artificial seawater for all measured element/Ca ratios, irrespective of whether varying $[Ca^{2+}]$ induced changes in R or not (*i.e.*, series #3 vs #4 and #5). This suggests that Ca^{2+} ions, but not necessarily the kinetic effects associated with R, play a central role in incorporation of the elements studied here. Moreover, while the linear trend against $[Ca^{2+}]$ was particularly robust and more exclusive for K/Ca and S/Ca ratios, Na/Ca and B/Ca ratios showed additional positive responses to increasing pH and/or [DIC] (series #1 or #2). We propose that these disparate incorporation patterns largely arise from the different response of growth-kink formation dynamics to changes in $[Ca^{2+}]$ as opposed to $[CO_3^{2-}]$ as well as the size differences between the aqueous forms of these elements (Na⁺, K⁺, SO₄⁻²⁻, and $B(OH)_4^-$ and/or $B(OH)_3$) relative to Ca^{2+} and CO_3^{2-} that constitute the calcite structure.

1: Uchikawa et al. (2017) Geochim. Cosmochim. Acta, 218, 291-307