Southeastern Indian Ocean seawater isotopes (δ^{18} O) Across the Subtropical Front

AMY J WAGNER¹, RYAN GLAUBKE², ELISABETH L SIKES² AND AMANDA CROTEAU¹

¹California State University Sacramento ²Rutgers University

Presenting Author: amy.wagner@csus.edu

Measurement of stable oxygen isotope ratios (d¹⁸O) of natural waters has been an important tool for understanding both modern and past climate and environmental conditions. Seawater d¹⁸O is primarily controlled by Rayleigh fractionation during evaporation and precipitation, making d¹⁸O a conservative interior water mass tracer. Seawater d¹⁸O data is relatively limited compared to terrestrial locations, particularly in the Indian and Southern Ocean and from subsurface water masses. Better understanding of the d¹⁸O variability between water masses is important for interpreting d¹⁸O_{calcite} measurements of foraminifera living in the water column that are used in paleoceanographic reconstructions.

We present seawater d¹⁸O data collected along two transects across the Subtropical Front (STF) from the Southeastern Indian Ocean and measured using laser absorption spectrometry. We find a > 1.0% range in d¹⁸O values between surface and bottom water samples and an average d¹⁸O difference between subtropical and Antarctic waters of 0.36‰. The d¹⁸O_{sw}-Salinity regression from the upper 1000 m is $d^{18}O_{sw} = 0.47*S - 16.3$ (R² = 0.6, n = 75, p < 0.001). This slope of the regression is comparable to other subtropical oceans and is similar to the slope of the regression from a recently published seawater d¹⁸O record from the South Australian Bight (SAB). We suggest that this tight relationship deep into the water column could be due to the proximal locations of the stations to and in the northern rim of the Southern Ocean and that waters that were recently at the surface were captured and mixed downward the prior winter. The $d^{18}O_{sw}$ range in our data across all depths (1.48‰) is larger than the range for the SAB data (0.96‰) and data from the SW Indian Ocean (1.13‰). Most of the d¹⁸O_{sw} variability in all the datasets is in the upper ocean and the observed variability in our data is likely due to our cruise track crossing the subtropical front between November and December 2018. Our results will be compared to predicted seawater d¹⁸O values calculated based on paired d¹⁸O_{calcite} data, measured *in-situ* temperature and salinity measurements, and published foraminifera paleotemperature equations.