Progressive Planetary Oxygenation: Multiple Lines of Evidence Confirm an Archean Oxidation Event at 2.5 Ga

ARIEL D. ANBAR1, ROGER BUICK2, GWYNETH GORDON1, ALEISHA JOHNSON3, BRIAN KENDALL4, TIMOTHY W. LYONS5, CHADLIN M. OSTRANDER6, NOAH J. PLANAVSKY7, CHRISTOPHER T. REINHARD8 AND EVA E. STÜEKEN9

1Arizona State University
2University of Washington
3University of Arizona
4University of Waterloo
5University of California, Riverside
6University of Utah
7Yale University
8Georgia Institute of Technology
9University of St Andrews

Presenting Author: anbar@asu.edu

Accumulating evidence suggests that the timing of the Great Oxidation Event (GOE) was affected by geological processes bringing reductants from Earth’s interior, such as crustal growth and mantle mixing [1-4]. These processes affect the flux and composition of metamorphic and volcanic gases, and hence atmospheric redox [5]. The emergence of Earth’s aerobic biosphere likely depended on the evolution of the solid planet as much as on the evolution of life.

These scenarios are predicated on geochemical evidence that O2 production began long before the GOE. Transient “Archean Oxidation Events” (AOE) have been identified at 2.5 Ga and 2.65 Ga [6 and references within]. Additional compelling evidence of pre-GOE O2 extends to at least 2.95 Ga [7, 8].

The most well-studied AOE intersects the 2.5 Ga Mt. McRae Shale, Western Australia, where correlated enrichments of TOC, Mo, and Re are interpreted as indicating oxidative weathering due to a “whiff” of pre-GOE O2 [9]. An alternative interpretation invokes igneous sourcing and post-depositional remobilization of Mo [10]. We find this hypothesis inconsistent with multiple lines of evidence, including: sedimentary Fe and S systematics [11]; the stable isotope compositions of Mo, N, U, Se, Tl, Hg, and Fe [summarized in 6; see also 12, 13]; and Re-Os systematics [14]. An AOE at 2.5 Ga remains the most parsimonious interpretation [15], consistent with emerging perspectives on planetary oxygenation.

6. Ostrander et al. (2021) AREPS 49, 337.
8. Bosak et al. (2013) AREPS 41, 21-44.
12. Meixnerová et al. (2021) PNAS 118, e2107511118.
13. Ostrander et al. (2022) GCA 316, 87.