Effect of oxygen fugacity on the storage of H in nominally anhydrous minerals

NATHALIE BOLFAN-CASANOVA¹, MR. ADRIEN GAUTIER, PHD² AND BERTRAND MOINE³

¹Laboratoire Magmas et Volcans

²Laboratoire Magmas et Volcans (LMV), Université Clermont Auvergne

³Université Clermont Auvergne

Presenting Author: nathalie.bolfan@uca.fr

The Earth's transition zone is potentially a zone within the mantle with a high H storage capacity due to its constitutive minerals, wadsleyite and ringwoodite that can contain up to 3 weight percent H_2O . This study aims to experimentally constrain the hydrogen storage capacities of olivine and wadsleyite at a depth around 410 km (13.5 GPa) under water-saturated conditions, as a function of temperature, oxygen fugacity and carbon content. Experiments have been conducted in the multi-anvil press, with sealed double capsules to preserve fluids and with different redox buffers to vary oxygen fugacity. The concentration and speciation of H in NAMS were measured by Raman spectroscopy.