Oxidized slab fluids recorded by sulfur-in-apatite: A case study from Syros, Greece

JESSE B. WALTERS¹, **HORST MARSCHALL**², TOBIAS GRÜTZNER³, KEVIN KLIMM¹, BRIAN KONECKE⁴ AND ADAM SIMON⁵

 ¹Institut für Geowissenschaften, Goethe Universität
²FIERCE (Frankfurt Isotope & Element Research Center), Goethe University Frankfurt
³Goethe-Universität Frankfurt
⁴Fathom Geophysics
⁵University of Michigan

Presenting Author: marschall@em.uni-frankfurt.de

Arc magmas and the subarc mantle exhibit an elevated oxygen fugacity (fO_2) relative to their mid-ocean ridge equivalents, which has been used to infer an oxidized slab source. Sulfur is one of the few abundant and mobile redox-sensitive elements capable of raising the fO_2 of arc magmas; however, studies have proposed slab fluids are dominated by reduced (S²⁻) or oxidized species (S^{6+}) . Here we use *in situ* X-ray absorption spectroscopy analysis of sulfur in apatite to monitor redox processes during high-P fluid-rock interaction. We sampled a 67 cm transect of reaction zones between an eclogite block and serpentinite matrix on Syros, Greece. The block core preserves a prograde to peak assemblage of garnet, omphacite, phengite, paragonite, epidoteclinozoisite, and rutile. Outward from the core, reaction zone assemblages are (Zones 1-3) omphacite + epidote-clinozoisite + rutile \pm garnet \pm apatite, (Zone 4) Ca-Na amphibole + omphacite + chlorite + pyrite + apatite, (Zone 5) Ca-Na amphibole + chlorite + pyrite + apatite, (Zone 6) Ca amphibole + chlorite + pyrite + apatite, and (Zone 7) Ca amphibole + talc + pyrite.

Prograde apatite matrix grains and inclusions in the block core and recrystallized eclogite assemblage (Zones 1-3) display only S⁶⁺ in their absorption spectra, proving sulfate stability during prograde to peak metamorphism and high-P metasomatism. Apatite in the pyrite-rich (~1-5 vol % pyrite) Ca-Na amphibole + omphacite + chlorite assemblage displays mixed S^{1-} and S^{6+} to S^{1-} only spectra, whereas apatite in the distal Ca amphibole + chlorite + pyrite assemblage display S⁶⁺ spectra. The outward transition from S^{1-} to S^{6+} in apatite in the amphibole-bearing assemblages occurs over a dramatic decrease in Na content and increase in Mg#. We propose that the change in Fe over this interval drove the reduction of S⁶⁺ in the infiltrating fluid to form S^{1-} in pyrite and apatite, as balanced by the oxidation of Fe^{2+} to Fe³⁺. In summary, these data demonstrate that oxidized S-bearing slab fluids were present during multiple stages of metamorphism and metasomatism on Syros - fluids of the type that can oxidize the subarc mantle and lead to oxidized arc magmas.