METASOMATIC ALTERATION AND OXYGEN ISOTOPIC COMPOSITIONS OF IGNEOUS CAIs FROM CK3 CHONDRITES

ALEXANDER N KROT¹, KAZUHIDE NAGASHIMA², TASHA DUNN³, MICHAIL I PETAEV⁴, CHI MA⁵ AND JUTTA ZIPFEL⁶

¹The University of Hawai'i
²University of Hawaii
³Colby College
⁴Harvard University
⁵California Institute of Technology
⁶Senckenberg Gesellschaft für Naturforschung
Presenting Author: sasha@higp.hawaii.edu

We describe the mineralogy and O-isotope compositions of primary and secondary minerals in coarse-grained igneous CAIs from CK3 carbonaceous chondrites measured *in situ* with the UH Cameca ims-1280 SIMS.

Compact Type A CAI from NWA 4964 (CK3.8) consists of grossmanite (18-20 wt% TiO₂), louisfuchsite $[Ca_2(Mg_4Ti_2) (Al_4Si_2)O_{20}]$, spinel, hibonite, gehlenite, perovskite, and secondary Fe±Ti-bearing grossular, Fe±Ti-bearing Al-diopside, clintonite, spinel, forsteritic olivine, anorthitic plagioclase, wadalite, titanite, and ilmenite. Primary spinel, hibonite, louisfuchsite, and a grossmanite inclusion inside spinel are ¹⁶O-rich (D¹⁷O ~ -24±2‰). Grossmanite enclosing spinel and melilite enclosing hibonite are ¹⁶O-depleted (D¹⁷O ~ -6 to -4‰). Secondary grossular, Al-diopside, olivine, and plagioclase have D¹⁷O of -3.9±1.8‰ (Fig. 1a).

Type B CAI from NWA 5343 (CK3.7) consists of fassaite (6-16 wt% TiO₂), spinel, anorthite, and secondary Fe±Ti-bearing grossular, Fe±Ti-bearing Al-diopside, forsteritic olivine, spinel, anorthitic plagioclase, clintonite, titanite, and ilmenite. Primary spinel is ¹⁶O-rich (D¹⁷O = -23±0.3‰). Fassaites containing ~6-8 wt% TiO₂ and poikilitically enclosing spinel are slightly ¹⁶Odepleted (D¹⁷O = -21±1.3‰). Spinel-free fassaites containing ~10-16 wt% TiO₂ are ¹⁶O-depleted: D¹⁷O range from ~ -10 to ~ -3‰. Primary anorthite is ¹⁶O-poor (D¹⁷O ~ -4‰). Secondary grossular, Al-diopside, olivine, and plagioclase have D¹⁷O of -3.5±1.8‰ (Fig. 1b).

The NWA 5343 **forsterite-bearing Type B CAI** consists of fassaite (2-10 wt% TiO₂), spinel, and forsterite, and secondary ferroan olivine (Fa_{~35}) and Ca,Na-plagioclase of variable composition (An₉₀₋₉₉Ab₁₋₈ and An₁₃₋₁₉Ab₇₉₋₈₅). Spinel and forsterite are ¹⁶O-rich (D¹⁷O = -23±0.7‰); fassaite shows large variations in D¹⁷O (from -23 to -3‰) which correlate with TiO₂. Secondary olivine and plagioclase have D¹⁷O of -2.7±1.1‰ (Fig. 1c).

We conclude that coarse-grained igneous CAIs from CK3.7–3.8s experienced an open-system multistage metasomatic alteration in the presence of an aqueous fluid with $D^{17}O$ of ~ –

4‰. The metasomatic alteration of these CAIs is more advanced and occurred under higher oxygen fugacity than that of the Allende (CV3.6) CAIs. Like in the Allende CAIs, melilite, anorthite, and Ti-rich pyroxenes experienced O-isotope exchange with the fluid; hibonite, spinel, forsterite, and louisfuchsite retained their original ¹⁶O-rich compositions.

