Bioaugmentation essay on polycyclic aromatic hydrocarbons spicked microcosms with mixture of soil bacteria

NICOLAS MARTIN, FABRICE DUPUY, MALGORZATA GRYBOS, THIBAUT LE GUET AND EMMANUEL JOUSSEIN

E2Lim UR 24133, Université de Limoges

Presenting Author: nicolas.martin@unilim.fr

The remediation of polycyclic aromatic hydrocarbons (PAH) in soil is a difficult process due to their high hydrophobicity [1]. Increase of PAH mineralization can be achieved through bioaugmentation, a process based on the input of specialized micro-organisms. Three bacterial strains (Sp-5, Sp-8 and Ac-14) isolated from polluted material and one strain (Sp-C8) isolated from creosote were selected for their ability to degrade phenanthrene or to form a stable emulsification. The aim of the study was to test in microcosms (laboratory soil incubations) the ability of strains mixtures to depollute loam-sandy material spiked with a total of 50 mg.kg⁻¹ of PAH (fluorene, phenanthrene, fluoranthene and pyrene) and bioavailable nitrogen, with a factorial plan of 2^4 optimized in 8 modalities. The PAH concentration was determined at 0, 7, 21 and 35 days after 3 days drying prior to HAP extraction procedure. At $t0_{+3}$ the amount in soil of analysed PAH was found in the average ranges of 1.8-0% for fluorene, 31.6-1.6% for phenanthrene, 100-59% for fluoranthene and 100-70% for pyrene. The fluorene degradation rate wasn't further analysed cause of the very low concentration found à t0+3. The addition of the strains Ac-14/Sp-5 increased phenanthrene degradation rates compared to the non bioaugmented microcosms with the respective values of 107.6±8.9 and 21.6±50.7 µg.kg⁻¹.day⁻¹ between 0 and 35 days. The mixture of strain Ac-14/Sp-C8 significatively decrease the fluoranthene degradation rate compared to the non bioaugmented microcosms with the respective values of 552.5±15 and 910,7 \pm 51,8 µg.kg⁻¹.day⁻¹ between 0 and 35 days. The pyrene degradation rate was 348.5±31.2 µg.kg⁻¹.day⁻¹ without any strain input and significatively increased in the presence of three communities: Sp-C8/Sp-5, Sp-C8/Ac.14 and Sp-5/Ac.14 between 7 and 21 days with the respective degradation rate of 705.2 \pm 236.1, 553.5 \pm 14.3 and 422.9 \pm 10.7 µg.kg⁻¹.day⁻¹. The microcosms shows that fluorene is degraded rapidly regardless of the modalities tested. The factorial design allowed us to show de bioaugmentation interest of Sp-C8, Sp-5 and Ac.14 on phenanthrene and pyrene degradation. These results show that the factorial designs can be used for the selection of community bacterial composition for PAH biodegradation.

[1] Laor, Farmer, Aochi, & Strom (1998), *Water Res.* 32(6), 1923–1931.