New insights into mineral storage of CO₂: comparison of flooded and not flooded sandstone from the same formation

DÓRA CSERESZNYÉS^{1,2}, CSILLA KIRÁLY³, ZSUZSANNA SZABÓ-KRAUSZ⁴, **DOMOKOS GYORE**^{5,6}, ÁGNES SZAMOSFALVI⁷, CSABA SZABÓ¹, GYÖRGY CZUPPON⁸ AND GYÖRGY FALUS⁷

¹Lithosphere Fluid Research Lab, Eötvös Loránd University ²Doctoral School of Environmental Sciences, Eötvös Loránd University

³Geographical Institute, Research Centre for Astronomy and Earth Sciences, ELKH

⁴Eötvös Loránd University

⁵Scottish Universities Environmental Research Centre (SUERC) ⁶Isomass Scientific Inc.

⁷Supervisory Authority for Regulatory Affairs

⁸Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, ELKH

Presenting Author: Domokos.gyore@isomass.com

Mineral storage of carbon-dioxide is one of the most promising ways of storing CO₂ safely underground. This study sheds light on the mechanism and timeline of the precipitation of a carbon-dioxide fixing mineral dawsonite (NaAlCO₃(OH)₂). Petrographic, geochemical and stable isotopic analysis of a sandstone formation from two neighbouring CO₂ gas fields in NW Hungary (Central Europe) were carried out. Sandstones from the Mihályi-Répcelak field contains large amount of dawsonite that entirely, and siderite that partially originate from the result of natural CO2 'injection' since late Miocene (6-4 Ma) on the basis of their carbon isotopic composition¹. New petrographic analysis of the same sandstone from the nearby Ölbő field where CO₂ has been trapped under the sandstone lacks dawsonite. New isotope data of siderite (-10.9 - -6.5 ‰) from the Ölbő field suggests that the siderite is early diagenetic in origin. Above results provide an excellent opportunity to establish input parameters for geochemical modelling on dawsonite formation in the Mihályi-Répcelak field as a response to CO₂ flooding.

Kinetic modelling was carried out using PHREEQC. The model indicates the dissolution of albite, which drives dawsonite precipitation via cation supply. It also indicates low amount of kaolinite precipitation after albite dissolution and that siderite is mostly dissolving. The majority of the reactions in the kinetic-batch models, takes place in the first 30 years after CO_2 injection. Modelled final composition of sandstone after CO_2 'injection' is validated by observed mineral composition of sandstones from the Mihályi-Répcelak CO_2 reservoir¹. Present research reinforces that dawsonite can be a significant sink of CO_2 that forms at the early stages of CO_2 injection, making it an ideal candidate for CCS projects seeking on achieving mineral storage of carbon on human timescales.

Acknowledgements: Professional support of the Doctoral Student Scholarship Program of the Co-operative Doctoral Program of the Ministry of Innovation and Technology Financed from the National Research, Development and Innovation Fund (KDP-2020-971244 to Dóra Cseresznyés) and the AAPG Foundation Grants-in-Aid, financed by the J. Elmer Thomas Memorial Grant is thanked.

References

[1] Cseresznyés et al. 2021, Chem.Geol.584(5).