New insights into mineral storage of CO₂: comparison of flooded and not flooded sandstone from the same formation

DÓRA CSERESZNYÉS1,2, CSILLA KIRÁLY3, ZSUZSANNA
SZABÓ-KRAUSZ4, DOMOKOS GYORE5,6, ÁGNES
SZAMOSFALVI7, CSABA SZABÓ1, GYÖRGY CZUPPON8
AND GYÖRGY FALUS7

1Lithosphere Fluid Research Lab, Eötvös Loránd University
2Doctoral School of Environmental Sciences, Eötvös Loránd University
3Geographical Institute, Research Centre for Astronomy and Earth Sciences, ELKH
4Eötvös Loránd University
5Scottish Universities Environmental Research Centre (SUERC)
6Isomass Scientific Inc.
7Supervisory Authority for Regulatory Affairs
8Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, ELKH

Presenting Author: Domokos.gyore@isomass.com

Mineral storage of carbon-dioxide is one of the most promising ways of storing CO₂ safely underground. This study sheds light on the mechanism and timeline of the precipitation of a carbon-dioxide fixing mineral dawsonite (NaAlCO₃(OH)₂). Petrographic, geochemical and stable isotopic analysis of a sandstone formation from two neighbouring CO₂ gas fields in NW Hungary (Central Europe) were carried out. Sandstones from the Mihályi-Répcelak field contains large amount of dawsonite that entirely, and siderite that partially originate from the result of natural CO₂ ‘injection’ since late Miocene (6-4 Ma) on the basis of their carbon isotopic composition. New petrographic analysis of the same sandstone from the nearby Ólbő field where CO₂ has been trapped under the sandstone lacks dawsonite. New isotope data of siderite (–10.9 - –6.5 ‰) from the Ólbő field suggests that the siderite is early diagenetic in origin. Above results provide an excellent opportunity to establish input parameters for geochemical modelling on dawsonite formation in the Mihályi-Répcelak field as a response to CO₂ flooding.

Kinetic modelling was carried out using PHREEQC. The model indicates the dissolution of albite, which drives dawsonite precipitation via cation supply. It also indicates low amount of kaolinite precipitation after albite dissolution and that siderite is mostly dissolving. The majority of the reactions in the kinetic-batch models, takes place in the first 30 years after CO₂ injection. Modelled final composition of sandstone after CO₂ ‘injection’ is validated by observed mineral composition of sandstones from the Mihályi-Répcelak CO₂ reservoir. Present research reinforces that dawsonite can be a significant sink of CO₂ that forms at the early stages of CO₂ injection, making it an ideal candidate for CCS projects seeking on achieving mineral storage of carbon on human timescales.