Contrasting old and young volcanism in Irruputuncu volcano, Central Andean Volcanic Zone, Chile

GABRIELA GUZMÁN-MARUSIC1, OSVALDO GONZÁLEZ-MAUREL2, CAMILA PINEDA3, INÉS RODRÍGUEZ1, PETRUS LE ROUX2 AND BENIGNO GODOY3

1Universidad Católica de Temuco
2University of Cape Town
3Centro de Excelencia en Geotermia de los Andes (CEGA), Universidad de Chile

Presenting Author: petrus.leroux@uct.ac.za

Irruputuncu (20°45' S; 68°34' W) is an active stratovolcano (middle Pleistocene – Holocene) located in the Central Andean Volcanic Zone at the Chile-Bolivia border. Irruputuncu was constructed during two separate stages: Irruputuncu-1 (I-1; middle Pleistocene) and Irruputuncu-2 (I-2; middle Pleistocene – Holocene) [1]. In order to evaluate the magmatic evolution of Irruputuncu volcano, we combine published whole-rock major element data [1] and new Sr and Nd isotope data from lava samples representative of both volcanic stages.

Irruputuncu lavas are characterized by SiO₂ = 59.7 to 63.0 % m/m; MgO = 1.8 to 3.0 % m/m = K₂O = 2.3 to 3.1 % m/m; ⁸⁷Sr/⁸⁶Sr = 0.70539 to 0.70548; ¹⁴³Nd/¹⁴⁴Nd = 0.51244 to 0.51248. Eruptive products are mainly andesitic to trachyandesitic in composition, associated with high-K calc-alkaline series. Nd isotope ratios have a negative linear correlation with increasing ⁸⁷Sr/⁸⁶Sr ratios, with a number of samples showing scattered ¹⁴³Nd/¹⁴⁴Nd ratios with respect to Sr isotope ratios at ~0.70545.

All lavas show similar compositional ranges in major element concentrations and in Nd isotope ratios. In contrast, our samples representative of the I-1 and I-2 stages differ among each other in terms of their ⁸⁷Sr/⁸⁶Sr ratios. The I-1 lavas show a larger variability in Sr isotopes (⁸⁷Sr/⁸⁶Sr = 0.70539 to 0.70548) compared to the more restricted range revealed for the I-2 samples (⁸⁷Sr/⁸⁶Sr = 0.70544 to 0.70546). Indeed, the Sr isotope ratios for the I-2 lavas values remain nearly constant with increasing ¹⁴³Nd/¹⁴⁴Nd values. Considering these preliminary results based on Sr-Nd isotope compositions, a temporal change in the differentiation regime of Irruputuncu volcano is proposed. The I-1 samples show a high degree of isotopic variability with respect to the younger I-2 eruptions, and thus the parental magmas of the I-1 lavas would be affected by higher degrees of crustal assimilation and contamination.