The effect of growth rate on trace elements and isotopes in coral skeletons

MARIA CRISTINA CASTILLO ALVAREZ1, PROF. PUPA GILBERT2, DANIEL A STOLPER3, JAMES WEAVER4, ERIC TAMBUTTÉ5 AND SYLVIE TAMBUTTÉ5

1Lawrence Berkeley National Laboratory
2University of Wisconsin-Madison
3University of California, Berkeley
4Harvard University
5Centre Scientifique de Monaco

Presenting Author: mcbenker@lbl.gov

The trace element composition of coral skeletons is commonly used as a proxy of past environments, where tracers like Sr/Ca, Li/Mg, δ¹³C, δ¹⁸O and stable strontium isotopes (δ⁸⁸/⁸⁶Sr), can potentially provide information about oceans of the past¹-³. A number of studies has determined that the trace element composition of aragonite is affected by the growth rate of the mineral. In coral skeletons, it has also been demonstrated that the zones of fast and slow growth rate have different trace element composition ⁴. We therefore expect that fast- and slow-growing corals show differences in their trace element and isotopic composition. Here, we identified coral genera and species that grow at different rates and analyzed trace elements and isotopes, to explore and identify new proxies for coral growth rate, which can be used in modern and fossil corals.