High-precision Δ_{47} and Δ_{48} acid fractionation factors for aragonite, calcite, dolomite, siderite and witherite

MIGUEL BERNECKER1, MAGALI BONIFACIE2, PHILIP STAUDIGEL1, AMELIA J DAVIES1, MATTIA TAGLIAVENTO1, JULIEN SIEBERT2, NICOLAS WEHR3 AND JENS FIEBIG1

1Goethe University Frankfurt
2Institut de physique du globe de Paris, Université Paris Cité, CNRS, UMR 7154
3Université Paris Cité, Institut de physique du globe de Paris, CNRS, UMR 7154

Presenting Author: bernecker@em.uni-frankfurt.de

Dual-clumped isotope thermometry comprises the joint measurement of Δ_{47} and Δ_{48} in CO$_2$ evolved from phosphoric acid digestion of carbonates1. The benefit over Δ_{47}-only measurements lies in the capability to identify if Δ_{47} was affected by rate-limiting kinetics in addition to temperature, and to reconstruct accurate carbonate formation temperatures devoid of kinetic bias2.

Direct measurements of Δ_{63} and Δ_{64} in carbonates is not technically feasible. During acid digestion of carbonates, fractionations of clumped isotopes ($\Delta_{63} \rightarrow \Delta_{47}$ and $\Delta_{64} \rightarrow \Delta_{48}$) occur, but the exact magnitude of these acid fractionation factors (AFFs) is uncertain and varies across published estimates.

Theoretical modeling3 indicates cation-dependent differences in AFFs for different carbonate mineralogies. Follow-up empirical studies yielded somewhat inconsistent Δ_{47} results; some did not observe any differences in AFFs (e.g., for calcite, aragonite, and dolomite4; for calcite and dolomite5), whereas others report differences (e.g., for calcite and dolomite6; for calcite, aragonite, dolomite, and magnesite7).

Recent advances in gas source mass spectrometry led to significant improvements in the external repeatability of clumped isotope measurements, e.g., from > 20 ppm to 7-9 ppm for Δ_{47}.8 With this improved analytical set-up, we analyzed a collection of stochastic aragonite, calcite, dolomite, siderite and witherite samples for their Δ_{47} and Δ_{48} values to investigate if cation substitution and mineralogy has any effect on AFFs.