Database of Raman spectra for REE mineral endmembers and applications to aqueous REE complexation

NICOLE C HURTIG1, ALEXANDER P GYSI2, SARAH E. SMITH-SCHMITZ2, BRYAN MACIAG3, ARTACHES MIGDISSOV, PHD4 AND DANIEL E. HARLOV5

1New Mexico Institute of Mining and Technology, Department of Earth & Environmental Sciences
2New Mexico Institute of Mining and Technology, New Mexico Bureau of Geology and Mineral Resources
3New Mexico Institute of Mining and Technology
4Los Alamos National Laboratory
5GFZ German Research Centre for Geosciences

Presenting Author: nicole.hurtig@nmt.edu

Rare earth elements (REE) are critical elements important for society due to their use in the high-tech and green energy industries. They are economically enriched in ore deposits, where they are hosted in phosphate, carbonate, and/or fluoride minerals. Ligands such as chloride and hydroxyl form aqueous complexes with the REE and allow their mobilization in these deposits. However, there is a significant knowledge gap when it comes to understanding the formation conditions and stability of these REE minerals and aqueous species. Here we use a LabRAM HR Evolution confocal Raman microscope equipped with a 532 nm Nd-Yag laser (100mW) and a 266 nm DPSS UV (50mW) laser to measure the spectra of high purity (>99.99%) synthetic solid REE endmembers (monazite, rhabdophane, oxides, hydroxides, and chlorides) and aqueous solutions with variable pH and salinity, and REE concentrations of 0.2 and 2 mol/kg. Solutions are measured at room temperature and using two different hydrothermal cells (i.e., a capillary cell and a hydrothermal diamond anvil).

Lattice vibrations for REE-O generally occur between 87-428 cm\(^{-1}\) and 466-1091 cm\(^{-1}\) for vibrational PO\(_4\) bending and stretching bands [1] in REE phosphates (Fig. 1). Oxides show the simplest Raman spectra with a dominant band between 320-420 cm\(^{-1}\) [2]; the dominant band for NdO is at 431 cm\(^{-1}\) in the anhydrous oxide and three main peaks occur at 290, 359 and 475 cm\(^{-1}\) in the Nd-hydroxide (Fig. 1). These results indicate that REE-O coordination chemistry affects the position of these vibrational bands. Raman shifts for REE-chlorides occur ~200 cm\(^{-1}\). For REE endmembers with decreasing atomic radii and increasing atomic weights these bands shift systematically from lower to higher wave numbers indicating a high sensitivity for minor changes in bond chemistry. Preliminary data for NdCl\(_3\)-bearing solutions at room temperature show a REE-O peak band at 296 cm\(^{-1}\) overlapping with the peak bands of the Nd-hydroxide solids. Systematic evaluation of REE-bearing solutions at elevated temperature will provide new information on the coordination chemistry of aqueous REE complexes relevant to hydrothermal fluids.
