The effect of $Se(IV)O_3^{2-}$ and $Np(V)O_2^+$ on calcite growth

LUKAS ZUNFTMEISTER¹, EVA SOBALLA², DIETER SCHILD³ AND FRANK HEBERLING³

¹KIT ²KIT - INE

³Karlsruhe Institute of Technology

Presenting Author: Lukas.Zunftmeister@kit.edu

In natural systems, calcite is subject to dynamic dissolution and re-precipitation processes. These yield a substantial retention potential for contaminants if impurity uptake is involved. In this study we investigate the recrystallization of aragonite into its polymorph calcite in presence of the impurity ions Se(IV) (SeO_3^{2-}) and Np(V) (NpO₂⁺). Selenium and Neptunium are part of spent nuclear fuel. Due to the long half-lives of ⁷⁹Se (3.8x10⁵ a) and ^{237}Np (2.1×10⁶ a) and the expected mobility of selenite and neptunyl, retention of these isotopes by calcite crystals in the host rock may be relevant for the long-term safety of nuclear waste repositories. Under thermodynamic considerations, recrystallization of aragonite into calcite should happen spontaneously. Experiments indicate that in pure systems kinetics are rather fast (< 1 a). However, both SeO_3^{2-} and NpO_2^+ inhibit this process while at the same time being taken up at calcite and/or aragonite surfaces. For Se, a concentration dependent reduction of calcite crystallization rates was observed (Figure 1). At Se-concentrations above 50 µmol/L, the recrystallization of aragonite into calcite is inhibited. The growth inhibition through ²³⁷Np was found to be even more effective. In the presence of 1µmol/L ²³⁷Np, <2% of the aragonite powder (100 mg solid/ 1L liquid) recrystallized into calcite after 2886 days when NaCl (0.1 mol/L) was used as electrolyte (~5% for 0.1 mol/L KCl). EXAFS results suggest an uptake of ²³⁷Np into aragonite, likely at the surface, and that uptake in the small amount of growing calcite plays no significant role.

The uptake of $\text{SeO}_3^{2^-}$ has been described as an entrapment process¹, where at sufficiently high supersaturations, an impurity that is not compatible with the bulk crystal gets forced into the crystal through entrapment of a stable surface species. Recrystallization experiments conducted in this study provide complementary data on selenite uptake at low supersaturations (SI(calcite) ~ 0.14) that are used to test and refine predicted excess enthalpies and partitioning coefficients for a virtual CaSeO₃ solid-solution endmember.

We acknowledge funding through the KRIMI-project, BMBF grant: 02NUK056A.

¹Heberling,Frank; Vinograd,Viktor; Polly,Robert et al. (2014): *Geochimica et Cosmochimica Acta* 134, S.16–38.

Figure 1: Recrystallization from aragonite to calcite in the presence of various amounts of aqueous selenite.