Thermo Scientific™ Orbitrap Exploris™ Isotope Solutions: tools for comprehensive characterization of polyisotopocules

ISSAKU E. KOHL¹, NILS KUHLBUSCH², DIETER JUCHELKA² AND ANDREAS HILKERT²

¹Thermo Fisher Scientific
²Thermo Fisher Scientific (Bremen) GmbH

Presenting Author: issaku.kohl@thermofisher.com

Orbitrap™ Isotope Ratio MS, both electrospray and gas source, is becoming increasingly accepted in the community as a unique and complimentary approach to classical IRMS techniques for measuring relative abundances of isotopically substituted species. Electrospray ionization offers the specific advantage of performing “soft” ionization, which produces intact molecular ions and provides unique insight into the molecular anatomy of polar compounds in aqueous solutions. In contrast to classical approaches, no chemical manipulation or gas conversion reactions are required and as a result, no intramolecular information is lost from sample to analysis. Similar to classical approaches, the principles of identical treatment and rigorous sample standard bracketing have been retained and are the key to achieving precise and accurate relative abundance measurements.

Currently, this approach is being applied to oxyanions and small organic molecules. Utilizing the HRAM capabilities of the Thermo Scientific™ Orbitrap Exploris™ MS platform, resolving singly and doubly substituted polyisotopocule molecular ions is achieved in routine measurements. Methods have been developed for nitrate (δ¹⁵N, δ¹⁶O, δ¹⁷O, Δ¹⁵N¹⁸O, Δ¹⁵N¹⁷O, Δ¹⁸O¹⁸O), sulfate (δ³³S, δ³⁴S, δ³⁶S, δ¹⁷O, δ¹⁸O, δ¹⁷O¹⁸O, δ¹⁸O¹⁸O, δ¹⁷O¹⁷O, Δ¹⁷O¹⁷O, Δ¹⁷O¹⁸O, Δ¹⁷O¹⁸O, Δ¹⁸O¹⁸O)(Figure), phosphate (δ¹⁸O, δ¹⁷O, Δ¹⁷O, Δ¹⁷O¹⁸O, Δ¹⁸O¹⁸O), which achieve sub-‰ precision for isotope ratios of singly substituted isotopologues. We are actively developing methods for small organic molecules such as MSA, caffeine, vanillin and amino acids.

Here we will present progress in method development including sample introduction, methods and measurement approaches. We will also touch on future directions and development opportunities in a wide range of topics in biochemical cycles, ecology and paleoclimate reconstructions.