Spinel-melt Fe³⁺ partition coefficient increases with spinel Cr#

AYOMIDE R AJAYI^{1,2}, FRED A DAVIS^{1,2} AND ELIZABETH COTTRELL²

¹University of Minnesota Duluth

²National Museum of Natural History, Smithsonian Institution Presenting Author: ajayi051@d.umn.edu

Oxygen fugacity (fO₂) in the oceanic upper mantle is a measure of the amount of oxygen available to react during the partial melting process that generates mid-ocean ridge basalts (MORB). Estimates for the fO₂ of the MORB-source mantle come from the products of melting (basalt glass $Fe^{3+}/\Sigma Fe$ ratios) and the residues of melting (ridge peridotite spinel-oxybarometry) [1]. But knowledge of mantle fO₂ prior to melting requires knowledge of the partition coefficients of Fe^{2+} and Fe^{3+} between melts and mantle minerals. Previous experiments demonstrated that the spinel/melt partition coefficient of Fe_2O_3 (DFe₂O₃) is sensitive to temperature and the Fe_2O_3 concentration of spinel [2]. It was not previously known whether spinel Cr#, which is sensitive to the degree of partial melting in the mantle, affects DFe₂O₃.

We performed experiments at 1 bar, 1225 °C, and from QFM-1 to QFM+2 at one log unit intervals on four compositions with spinel Cr#s ranging from 0.18 to 0.53 to test if spinel Cr# affects DFe₂O₃. We analyzed major elements in each experimental phase by EPMA. We calculated spinel Fe³⁺/ Σ Fe ratios from EPMA analyses corrected using Mössbauer-characterized spinel standards and we measured Fe³⁺/ Σ Fe ratios in the glasses by XANES.

At a given spinel Cr#, $DFe_2O_3(spl/melt)$ increases as fO_2 increases, consistent with previous observations [2,3]. At any given fO_2 , $DFe_2O_3(spl/melt)$ increases by a factor of ~2 as spinel Cr# increased by a factor of ~3. Davis and Cottrell [2] previously determined that temperature and spinel Fe_2O_3 are important controls on $DFe_2O_3(spl/melt)$, and we have now shown that spinel Cr# also has an important effect. As melting proceeds beneath ridges, residual peridotites become increasingly refractory, and spinel Cr#s increase such that Fe_2O_3 to will become more compatible in spinel during melt extraction. This may act to keep peridotite residues from becoming reduced even as Fe_2O_3 is depleted in the rock overall.

[1] Cottrell et al. (2021) Geophys Mono DOI: 10.1002/9781119473206.ch3 [2] Davis and Cottrell (2021) Contrib Mineral Petrol DOI: https:// doi. org/ 10. 1007/s00410-021-01823-3. [3] Davis and Cottrell (2018) Am Mineral DOI: http://doi.org/10.2138/am-2018-6280