Single-microfossil carbon isotope analyses show consistently ¹³C-depleted microbial mat-builders throughout the Proterozoic

HEDA AGIĆ¹, SUSANNAH PORTER², PHOEBE COHEN³ AND CHRISTOPHER JUNIUM⁴

¹Durham University

²University of California Santa Barbara

³Williams College

⁴Syracuse University

Presenting Author: heda.agic@durham.ac.uk

Proterozoic rocks record significant fluctuations in isotopic composition of sedimentary carbon, and are generally ¹³C-depleted relative to the Phanerozoic. One possibility is that greater contributions of ¹³C-depleted organic matter (OM) from widespread benthic microbial mats during the Proterozoic. Here we test this hypothesis by measuring the organic carbon isotopic composition of mat-builder microfossils.

Mat-building prokaryotes are a common component of Proterozoic organic-walled microfossil (OWM) assemblages. Abundant and widespread form-species include filamentous Siphonophycus and Polytrichoides, and colonial Synsphaeridium, long interpreted to be cyanobacterial based on similarity to extant microorganisms. We measured the C-isotopic composition of a broad array of individual OWM from multiple Proterozoic units, using nano-EA-IRMS. This approach provides a window into short-term environmental variability and reveals palaeoecological information about Proterozoic life. Studied assemblages derive from the Paleoproterozoic Changcheng Group (China), the end-Mesoproterozoic lower Bylot Supergroup (Canada), the Tonian Chuar Group (USA), and the Ediacaran Pertatataka Formation (Australia). In general, withinsample $\delta^{13}C_{OWM}$ showed a wide range, in some cases with spreads >15‰. The most consistent values among OWM were of filamentous and cell-aggregate mat-builder taxa, which averaged -29.3‰ (N=10) in the Changcheng, -30.5‰ (N=20) in the Bylot, -27.8‰ (N=45) in the Chuar, and -29.9‰ (N=9) in the Pertatataka assemblage. Mat-builders were on average more depleted than the average assemblage $\delta^{13}C_{OWM}$ within a single sample by 3.7‰ in the Changcheng, 4.8‰ in the Bylot, 3.5‰ in the Chuar, and 2.5% in the Pertatataka. Additionally, matbuilders were more depleted than bulk $\delta^{13}C_{org}$ in 37 of 43 samples, including in the strata recording a positive C-isotope excursion in the Chuar Group where $\delta^{13}C_{org}$ averaged at -18.3‰.

We suggest that consistently low δ^{13} C values of OM in the Proterozic were derived from widespread microbial mats that produced a higher proportion of OM than other OWM, including planktonic taxa.