Quantifying CO₂ removal from enhanced weathering sites: A multiproxy approach

WILLIAM J. KNAPP¹, EMILY I. STEVENSON², PHIL RENFORTH³, PHILIPPA ASCOUGH⁴, ALASDAIR C. G. KNIGHT², LUKE BRIDGESTOCK², MICHAEL BICKLE¹, YONGJIE LIN⁵, ALEX L RILEY⁶, WILLIAM M MAYES⁶ AND EDWARD T. TIPPER²

¹University of Cambridge, Department of Earth Sciences
²University of Cambridge
³Heriot-Watt University
⁴Scottish Universities Environmental Research Centre
⁵MNR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Geological Sciences
⁶University of Hull
Presenting Author: wjk27@cam.ac.uk

Enhanced weathering is a carbon dioxide (CO₂) mitigation strategy that promises large scale and rapid atmospheric CO₂ removal. One of the main challenges associated with this carbon removal technology is monitoring, reporting and verifying the amount of carbon removed as a result of enhanced weathering dissolution and precipitation reactions. Here, we study a wellestablished CO₂ mineralisation site, the former steel works in Consett Co. Durham, UK, where steel slags comprising gehlenite $(Ca_2Al-SiO_7)$, akermanite $(Ca_2Mg-Si_2O_7)$ and portlandite (Ca(OH)₂) phases have been weathered in a landscaped spoil heap for at least 40 years. We have produced new radiocarbon, δ^{13} C, 87 Sr/ 86 Sr, and major element data in waters, calcite precipitates and soils to accurately quantify the rate of carbon removal at the Consett site. We demonstrate that measuring the radiocarbon activity of travertines deposited in waters draining the slag heap provides a robust constraint on the source of the carbon being sequestered (80 % modern, $2\sigma = 8$ %), and use downstream alkalinity measurements to determine the proportion of carbon being exported from the catchment. Geochemical modelling reveals that the main phase dissolving in the slag are hydroxide minerals (e.g. portlandite), with minor contributions (<3 %) from the silicate minerals which constitute the majority of slag material. We propose a novel method for quantifying carbon removal rates at enhanced weathering sites, which is a function of the radiocarbon-apportioned sources of carbon being sequestered, and the proportion of carbon being exported from the catchment to the oceans.