The actinide dioxides nanophase stability in the presence of environmental-related anions

TATIANA PLAKHOVA¹, ANASTASIIA KUZENKOVA¹, YURI TETERIN JR.^{1,2}, ROMAN SVETOGOROV², ALEXANDER TRIGUB^{1,2}, ANNA ROMANCHUK¹ AND STEPAN KALMYKOV¹

¹Lomonosov Moscow State University

²National Research Centre «Kurchatov Institute»

Presenting Author: tatiana.v.plakhova@gmail.com

Recently actinide(IV) oxides (AnO_2) nanoparticles (NPs) have increased their importance for environmental safety issues and the development of new technological schemes. The progress in high-precision methods of solid phase analysis has increased our understanding of the structures of actinides-based particles at the nanoscale. Actinide dioxides NPs of different crystallinity can be formed in solutions under various conditions. This study aims to determine the phase stability of actinide dioxides (PuO₂, NpO₂, ThO₂) in the form of nanoparticles during aging in solutions. Experiments with a non-radioactive analog of actinide dioxide -CeO₂ were also carried out. Solubility and phase transportations of AnO₂ and CeO₂ in pure solutions (without complexing agents), phosphate, and carbonate-containing media are studied to evaluate the possible aging pathways.

To study the aging process, AnO₂ or CeO₂ nanoparticles were kept in aqueous media with different pH values in the presence of NaClO₄, Na₂HPO₄/NaH₂PO₄, or NaHCO₃ for up to 4 years. Additionally, the dioxide's aging process was studied under mild hydrothermal treatment (HT) conditions (< 150 °C). The structure features and phase composition of the samples were investigated by synchrotron X-ray diffraction (XRD) and absorption spectroscopy (XAS), electronic microscopy (SEM and HRTEM), and Raman spectroscopy. It was shown that the X-ray amorphous ThO₂ trends to crystallize to nanocrystalline ThO₂particles through long-term aging and HT treatment in NaClO₄ solution. Simultaneously, no significant changes in PuO₂ and CeO₂ structure were observed under the same aging conditions. Under long-term storage and HT treatment conditions in a phosphate buffer medium, PuO2, CeO2, and ThO2 nanoparticles are crystallized into the phosphates phase. Their second-generation phase structure depends on the pH value and the composition of the initial phosphate buffer. The effect of carbonate anions on Np-containing particle formation in solutions was also revealed.

This work was supported by the Russian Science Foundation (grant no. 22-73-10056)