Investigation of the petrogenetic relationship between the two igneous formations in Jezero crater by using trace element concentrations acquired by the Perseverance SuperCaminstrument

VINCIANE DEBAILLE¹, OLIVIER FORNI², RYAN ANDERSON³, PIERRE BECK⁴, OLIVIER BEYSSAC⁵, ELISE CLAVÉ⁶, SAM CLEGG⁷, AGNES COUSIN², ERWIN DEHOUCK⁸, THIERRY FOUCHET⁹, TRAVIS GABRIEL¹⁰, JEFFREY R JOHNSON¹¹, STÉPHANE LE MOUÉLIC¹², LUCIA MANDON¹³, SYLVESTRE MAURICE¹⁴, PIERRE-YVES MESLIN¹⁵, PAOLO PILLERI¹⁶, FRANCOIS POULET¹⁷, CATHY QUANTIN-NATAF¹⁸, CLÉMENT ROYER¹⁹, ARYA UDRY²⁰ AND ROGER C. WIENS²¹

Presenting Author: vinciane.debaille@ulb.be

During the first year after its landing in Jezero crater in Feb 2021, the Mars2020 Perseverance rover has been investigating the igneous lithologies located at the bottom of the crater. As such, two main formations have been identified mainly based on their MgO and Al₂O₃ wt.% obtained by the SuperCam instrument [1]: the Máaz formation (<5 wt.% MgO and 9 wt.% > Al₂O₃; basaltic to basaltic-andesite) and the Séitah formation (>20 wt.% MgO and 4 wt.% < Al₂O₃; olivine-rich cumulate with few plagioclase [2]). The Séitah formation underlies the Máaz formation and Máaz dips down away from Séitah in all directions [3].

The relationship between those two units is still unclear. It has been proposed there could be related by magmatic differentiation, for example by fractionation and accumulation of olivine [1]. However, thermodynamic modeling using the MELTS software has challenged this hypothesis, as the two formations are not at equilibrium with each other for their pyroxene compositions [4]. This would imply that the two formations are not related to the same magmatic event, hence bringing the corollary question of the origin of an olivine-rich layer.

Trace element concentrations are straightforwardly sensitive to magmatic differentiation processes. Strontium, barium and Rb concentrations have been obtained by the Supercam instrument. Those concentrations were obtained by adapting multivariate regression methods similar to the one described in [5].

Concentrations in Sr, Rb and Ba will be used to investigate the question of the petrogenetic relationship between the Máaz and the Séitah formations.

- [1] R.C. Wiens et al., Science Advances 8, eabo3399 (2022).
- [2] Y. Liu et al., Science 377, 1513-1519 (2022).
- [3] S.-E. Hamran et al., Science Advances 8, eabp8564 (2022).
- [4] A. Udry et al., Journal of Geophysical Research (2023).
- [5] R.B. Anderson et al., Spectrochimica Acta B (2023)

¹Université libre de Bruxelles

²Institut de Recherche en Astrophysique et Planétologie (IRAP),Université de Toulouse 3 Paul Sabatier, CNRS, CNES

³USGS (United States Geological Survey)

⁴Institut de Planétologie et d'Astrophysique de Grenoble – Université Grenoble Alpes - CNRS

⁵IMPMC, Sorbonne Université, CNRS UMR 7590, MNHN

⁶CELIA, Univ. Bordeaux

⁷LANL (Los Alamos National Laboratory)

⁸LGL-TPE (Univ. Lyon 1 / CNRS)

⁹LESIA

 $^{^{10}}$ USGS

¹¹JHU APL

 $^{^{12}}LPG$

¹³California Institute of Technology

¹⁴IRAP (Institut de Recherche en Astrophysique et Planétologie)

¹⁵Institut de Recherche en Astrophysique et Planétologie (IRAP)

¹⁶IRAP

¹⁷IAS

¹⁸LGL-TPE

¹⁹CNRS IRAP

²⁰University of Nevada Las Vegas

²¹Purdue University