Water isotopologue insights into tropical Pacific hydroclimate: seawater and precipitation δ^{18} O in the **Indo-Pacific Warm Pool**

NICOLE K MURRAY¹, JESSICA CONROY¹ AND PATRICK L COLIN²

¹University of Illinois Urbana-Champaign ²Coral Reef Research Foundation (CRRF) Presenting Author: nkmurra2@illinois.edu

It is often assumed that mixed layer seawater δ^{18} O values $(\delta^{18}O_{sw})$, which are highly correlated with sea surface salinity, reflect changes in atmospheric moisture balance and precipitation

 δ^{18} O values. This is especially the case in regions of high precipitation rates, such as the Indo-Pacific Warm Pool (IPWP). Here, fossil marine carbonate δ^{18} O records, which record δ^{18} O_{ew}, are thus used to provide information on past changes in salinity and atmospheric moisture balance prior to the short period of instrumental observations. However, only short, 1-3 year long $\delta^{18}O_{sw}$ time series exist from the IPWP, limiting our understanding of this key water mass tracer. Here we present 9year long, monthly resolved records of $\delta^{18}O_{sw}$ from Malakal Harbor, along with precipitation δ^{18} O from Koror, Palau. There is a strong, negative relationship between Palau $\delta^{18}O_{sw}$ local precipitation, and gridded GPCP precipitation over Palau, and a strong positive relationship with gridded outgoing long-wave radiation (OLR) over Palau. The relationship between OLR and Palau $\delta^{18}O_{sw}$ is stronger than the relationship with precipitation, as OLR values are reflective of both local rain rates as well as the more large-scale, deep convective processes associated with isotopic fractionation in precipitation. We further find that Palau $\delta^{18}O_{sw}$ variability is positively correlated with Palau precipitation $\delta^{18}O$ values, supporting this interpretation. Palau $\delta^{18}O_{sw}$ values also record aspects of regional surface ocean circulation and water mass mixing. We find a strong negative correlation between Palau $\delta^{18}O_{sw}$ and surface meridional current strength, in the region of the Mindanao Current east of the Philippines. Further investigation of monthly anomalies of Palau $\delta^{18}O_{sw}$ will be used to assess interannual versus seasonal controls on the relationship between Palau $\delta^{18}O_{sw}$, hydroclimate, the Mindanao Current, and the El Niño-Southern Oscillation. We anticipate that results from this work will provide an interpretive framework for marine carbonate δ^{18} O records from the IPWP.