Understanding Nitrogen Incorporation into Skeletons of Scleractinian Coral from Field Data and Laboratory Experiments

SOPHIE NUBER ${ }^{1}$, HAOJIA ABBY REN ${ }^{2}$, REN YI CAI LI ${ }^{2}$, JOELLE TANUPUTRI ${ }^{2}$ AND YI CHI CHEN ${ }^{2}$
${ }^{1}$ National Taiwan University, Department of Geosciences
${ }^{2}$ National Taiwan University
Presenting Author: snuber@ntu.edu.tw

Coral skeleton-bound nitrogen isotopes ($\mathrm{CS}-\delta^{15} \mathrm{~N}$) have become widely applied in palaeo-climatological research to record the $\delta^{15} \mathrm{~N}$ of source-water nitrogen (N), and to infer changes in N sources to reef ecosystems across space and time. However, the processes that determine N incorporation into the skeleton and their effect on interpretations of CS- $\delta^{15} \mathrm{~N}$ are still poorly understood. In this multi-year project, we intend to investigate these processes with a two-step approach. First, we characterise the natural variabilities of $\delta^{15} \mathrm{~N}$ in coral tissue, skeleton, and symbiodiniaceae by using coral samples spanning three species from three Western Pacific islands across two seasons. We then set up a tracer experiment using ${ }^{15} \mathrm{~N}$-labelled nitrate in incubated and wild coral samples to trace N incorporation into the skeleton of Porites spp. Our natural variability results show that the spatial changes in the $\delta^{15} \mathrm{~N}$ of coral tissue, symbiodiniaceae, and skeletal N are overall determined by the environmental N sources. Although seasonal changes in the $\mathrm{CS}-\delta^{15} \mathrm{~N}$ of Porites spp. are clearly visible, we find no apparent seasonal changes in the tissue or symbiodiniaceae $\delta^{15} \mathrm{~N}$ from all three species including Porites $s p p$. This may suggest that coral tissue N has a longer residence time than the skeletal N , and is in line with recent labelling studies that demonstrate long residence times for coral tissue N as a whole. The apparent seasonal $\mathrm{CS}-\delta^{15} \mathrm{~N}$ changes and its correlation with environmental N sources then call for a direct pathway for N incorporation into the skeleton. We additionally show preliminary results from the ${ }^{15} \mathrm{~N}$-labelled nitrate labelled experiment.

