Strong ¹³C depletion induced by solar UV photolysis of CO₂ and its implication for early Mars

YUICHIRO UENO¹, **MATTHEW S JOHNSON**², JOHAN A SCHMIDT², ALEXIS GILBERT³, HIROYUKI KUROKAWA⁴, TOMOHIRO USUI⁵ AND XIAOFENG ZANG³

¹Department of Earth and Planetary Sciences, Tokyo Institute of Technology

²University of Copenhagen

³Tokyo Institute of Technology

⁴Earth-Life Science Institute, Tokyo Institute of Technology

⁵Japan Aerospace Exploration Agency

Presenting Author: msj@chem.ku.dk

We have conducted photochemical experiment and ab initio calculation, both of which demonstrated that solar UV photodissociation of CO_2 yields strongly ¹³C-depleted CO owing to wavelength-dependent isotope effect. The newly identified large carbon isotope fractionation mechanism implies that the cause of ¹³C enrichment of CO_2 in early Mars atmosphere should be re-considered in addition to the carbon escape into space. Furthermore, the ¹³C-depleted CO should have been converted into aldehydes and carboxylic acids under a reducing early Mars atmosphere, and could have deposited into sediment [1,2]. The expected scenario could explain the observed strong ¹³C depletion of some sedimentary organic matter in early Martian sediment [3].

- [1] Zang et al. (2022). Astrobiology 22, 387-398.
- [2] Lammer et al. (2020). Space Science Reviews 216, 74.
- [3] House et al. (2022). PNAS 559, 613-616.