Classification and 53Mn–53Cr chronology of enstatite chondrite meteorites from a new strewn field in Oman.

ANULEKHA PRASAD1, BEDA HOFMANN1,2, KLAUS MEZGER1, ARYAVART ANAND3, PASCAL MAURICE KRUTTASCH1 AND EDWIN GNOS4

1University of Bern
2Natural History Museum Bern
3Universität Bern
4Natural History Museum Geneva

Presenting Author: anulekha.prasad@students.unibe.ch

Enstatite chondrites constitute ~1% of all meteorites. They are characterized by reduced and anhydrous minerals assemblages including enstatite, metallic Fe–Ni, and sulphides. The Oman desert is one of the most important resources of meteorites [1]. 26 paired enstatite chondrites collected from a new Omani strewn field are studied for a detailed classification of the samples as well as to obtain chronological constraints on the thermal evolution of the enstatite chondrite parent body(ies) using the 53Mn–53Cr short lived chronometer.

The meteorite samples from the strewn field typically show a pristine core and a weathered rim. A large weathering range from W1 to W4 is indicated by the degree of oxidation of troilite and iron ranging from minor to complete transformation to iron (hydr)oxides. Enstatite (En$_{98}$) and minor olivine (Fo$_{99}$) have compositions typical of E chondrites. Petrographic analysis indicates that the samples have different metamorphic grades ranging from 4 to 6 suggesting the original mass was a breccia. Some clasts within a representative sample from the strewn field show well-preserved chondrules with fine-grained mesostasis and heterogeneous plagioclase that suggest a petrographic grade of 4. Whereas, the absence of chondrules and >50 mm size of plagioclase in other clasts suggest petrographic grade 6. The samples belong to group EL as indicated by the mean chondrule size (~0.5 mm), the presence of alabandite (MnS), the Ni content in the phosphides (~30 wt%) and the Si content in the metal (~3 wt%). Petrographic features such as undulous extinction of silicates and the lack of planar fractures [2] suggest shock stages from S1 to S2 (i.e., unshocked to very weakly shocked).

Additionally, sequential digestion is performed on a representative sample of the strewn field to obtain mineral fractions with variable Mn/Cr ratios. The Cr isotopes and Mn/Cr ratios obtained from the leachates are used to determine an isochron that constrains the age of prograde metamorphism in the sample using the 53Mn–53Cr decay scheme.

References-