Hydrogen isotope fractionation in the deep Earth

MR. ADRIEN GAUTIER, PHD¹, NATHALIE BOLFAN-CASANOVA², BERTRAND MOINE³, LAURETTE PIANI⁴, HÉLÈNE BUREAU⁵ AND HICHAM KHODJA⁶

 ¹Laboratoire Magmas et Volcans (LMV), Université Clermont Auvergne
²Laboratoire Magmas et Volcans
³Université Clermont Auvergne
⁴CRPG, CNRS-Université de Lorraine
⁵CNRS, Sorbonne Université, IMPMC, France

⁶NIMBE/LEEL

Presenting Author: Adrien.Gautier@uca.fr

The most abundant mineral in the mantle, olivine, is described as nominally anhydrous whereas its high-pressure polymorph, wadsleyite, can contain up to 3% H₂O by weight. This study aims to measure the effect of polymorphism on isotopic fractionation as well as the effect of hydrogen speciation. Samples were synthesized in the multi-anvil press at 12-14 GPa and low temperature conditions of 550-1100 °C, similar to conditions prevailing in a subducting slab. High pressure experiments are realized in fluid saturation conditions. The study focuses on the quantification of the water contents and speciation of olivine, wadsleyite and enstatite and their respective D/H isotope ratios, using a multi-instrumental approach for wadsleyite. Raman spectroscopy is used to monitor hydrogen speciation while Secondary Ion Mass Spectrometry (SIMS) provides total hydrogen contents and D/H ratios. SIMS calibration is performed using samples characterized with Elastic Recoil Detection Analysis (ERDA) nuclear probe. We report the D/H fractionation between olivine and its high-pressure polymorph, using enstatite as a witness of the fluid isotopic composition. We find that Deuterium fractionates more into olivine compared to wadsleyite with a $ln(\alpha)_{wadsleyite-olivine}$ negative up to 1100°C.