Combined ¹⁴²Nd and ¹⁸²W systematics of Neoarchean rocks from the Yilgarn Craton, W-Australia

MAX HELLERS¹, ERIC HASENSTAB¹, MR. JONAS TUSCH¹, CARINA T. GERRITZEN², MARIO FISCHER-GÖDDE¹, ANDREAS SCHNEIDER¹, CHRISTIAN MARIEN¹, HUGH SMITHIES³, STEPHEN WYCHE³, MARTIN J. VAN KRANENDONK⁴ AND CARSTEN MÜNKER⁵

¹University of Cologne
²Vrije Universiteit Brussel
³Geological Survey of Western Australia
⁴University of New South Wales
⁵Universität zu Köln
Presenting Author: hellers m@outlook.com

The short-lived radiogenic ¹⁴⁶Sm-¹⁴²Nd and ¹⁸²Hf-¹⁸²W decay series can place important constraints on early Earth processes. While most modern rocks are largely homogeneous in their ¹⁴²Nd/¹⁴⁴Nd and ¹⁸²W/¹⁸⁴W isotope compositions, isotope anomalies of ¹⁴²Nd and ¹⁸²W/¹⁸⁴W were frequently observed in Archean rocks, revealing that the parent/daughter nuclides of these short-lived decay series must have been fractionated during their lifetime. Interpreting the origin of these anomalies hinges on a comprehensive characterization of the mantle reservoirs involved and the identification of possible biases, like metasomatic fluids and crustal contaminants.

Here, we present new high-precision ¹⁸²W/¹⁸⁴W and 142Nd/144Nd isotope data using previously published MC ICP-MS protocols [1,2] for Neoarchean samples from the Yilgarn Craton, W-Australia. For better characterization, we also investigated long-lived ε^{143} Nd- ε^{176} Hf isotope systematics, as well as trace element, and high-precision HFSE concentrations. Isochron approaches for 2.7 Ga old mafic to ultramafic samples from the Kalgoorlie Terrane reveal that 147Sm-143Nd and 176Lu-176Hf systematics remained pristine. A suite of 2.7 Ga old mafic samples from the Kambalda area shows small but resolvable μ^{142} Nd variations (+0.4±1.2 to -1.5±0.9) that correlate positively with ϵ^{143} Nd. When interpreted as differentiation model age, this correlation reveals a source differentiation no earlier than 4.12 Ga. We found resolvable μ^{182} W excesses of +4.5±1.6 and +5.3±3.6 in mafic-ultramafic rocks from the Kambalda and Kalgoorlie suites, respectively, that do not correlate with μ^{142} Nd values. In conjunction with previously reported ε^{100} Ru excesses observed in the same samples [3] we interpret the observed μ^{182} W excesses to reflect incomplete homogenization of late veneer in Kambalda mantle sources at 2.7 Ga, in line with similar observations from near-contemporaneous komatiites from Canada [4]. Our Yilgarn TTGs show uniform u¹⁸²W excesses of $+9.0\pm1.1$, in line with previous data [5]. Paleoarchean ¹⁴³Nd-¹⁷⁶Hf model-ages reflect an ancient source for the TTGs and suggest the inheritance and long-term preservation of ¹⁸²W excesses from their precursor rocks.

[1] Hasenstab-Dübeler et al. (2022) Chem. Geol. 614, 121-141

- [2] Tusch et al. (2019) GCA 257, 284-310
- [3] Fischer-Gödde et al. (2021) Goldschmidt Abstract 4362
- [4] Puchtel et al. (2018) GCA 228, 1-26
- [5] Stubbs et al. (2020) Goldschmidt Abstract 2476