Mobility of fluoride in fluids influenced by hydrothermal alteration of sediment

THILDE J. T. VOJE1, SAMUEL I. PEREIRA1, THOMAS Ø. VIFLOT1, JOHANNES SCHEFFLER2, JEFFREY S. SEEWALD3, AMY GARTMAN4, ANDREAS BEINLICH1 AND EOGHAN P. REEVES1

1Department of Earth Science & Centre for Deep Sea Research, University of Bergen
2Department of Earth Science, Memorial University of Newfoundland
3Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
4USGS Pacific Coastal and Marine Science Center

Presenting Author: thilde.voje@student.uib.no

Fluoride in hydrothermal systems plays an essential role as a ligand for the mobility of rare earth elements (REE) [1], but its behavior during fluid-rock interactions in sediment-influenced/hosted systems remain largely uncharacterized. Previous experimental work showed temperature-dependent precipitation-dissolution processes during simple heating of seawater alone [2]. We build upon earlier efforts with experiments using a Au-TiO2 flexible cell apparatus with the aim to better understand F-behavior during hydrothermal alteration of sediment. Two sediment types, Guaymas Basin (GUAY) and Arctic Mid-Ocean Ridge sediments (KNIP) were heated in the presence of artificial seawater. KNIP was heated to 250-330-250˚C (35MPa), while GUAY was heated to 250-330-360˚C (35MPa). Fluid samples were extracted at various time points and analyzed for F and other dissolved species. At 250˚C, both experiments show similar F depletion to persistent low values relative to seawater (70 µmol/kg). In contrast, higher temperatures of 330˚C and 360˚C resulted in elevated concentrations of F relative to seawater. These consistent trends suggest a strong degree of equilibrium control, most likely related to precipitation-dissolution of F-bearing mineral phases.

To test our observations, we also analyzed for F abundances in various sediment-influenced/hosted hydrothermal fluids which are characterized by diverse temperatures - Guaymas Basin (172-299˚C), Middle Valley (40-187˚C), Escanaba Trough (210˚C), Loki’s Castle (43–316˚C) and Ægir (282˚C). Elevated concentrations of F relative to seawater were measured in some of these fluids, with the hotter fluids at Guaymas and Escanaba having the highest concentrations (84–130 µmol/kg). However, Middle Valley and the sediment-influenced Loki’s Castle and Ægir fluids were depleted relative to seawater values, resembling observations from earlier studies that have measured F in bare-rock hydrothermal systems lacking sediment influence [3]. Our results overall indicate that both fluid-sediment interactions and temperature play complex roles in regulating dissolved F during hydrothermal sediment alteration.