Unraveling the composition of mantle noble gases from CO₂-rich geothermal emanations, Homa Hills, Kenya

PROF. BERNARD MARTY¹, DELPHINE CONTAMINE², RAPHAËL PIK³, ALAN M SELTZER⁴, DAVID V BEKAERT⁵, MARC DIRAISON¹, BASTIEN WALTER¹, YVES GÉRAUD⁶, PETER OMENDA⁷ AND JACQUES VARET⁸

¹Université de Lorraine

²CNRS CRPG

³Centre de Recherches Pétrographiques et Géochimiques (CRPG)

⁴Woods Hole Oceanographic Institution

⁵CRPG, Université de Lorraine, CNRS

⁶Géoressources, Lorraine University

⁷Scientific and Engineering Power Consultants Ltd

⁸Géo2D sarl

Presenting Author: bernard.marty@univ-lorraine.fr

Within the framework of the "Geothermal Village" program (an action of LEAP-RE, an Europe-Africa Partnership for Renewable Energy), we conducted a multidisciplinary study of CO2-rich fluids sampled at Homa Hills, Kenya. This volcanic zone, located close to Lake Victoria along the Nyanza transverse rift, is dominated by Tertiary to Pleistocene carbonatitic volcanism. Abundant bubbles in geothermal waters occurring at three sites - Abundu, Ayombo, Balla - around the volcano were sampled in copper tubes and in 0.25 L-1.5 L Giggenbach-type bottles in order to concentrate large amounts of noble gases for precise isotope analysis. The Balla site was previously sampled by Darling et al [1], who reported ⁴⁰Ar/³⁶Ar ratios around 800, the highest values recorded so far in Kenyan rift gases. We confirmed high ⁴⁰Ar/³⁶Ar ratios between 726 (Ayombo) and 931 (Balla) for the three sites, despite variable gas compositions (CO₂ content between 97.2% and 99.6%, the rest being mainly N₂ and noble gases), implying limited atmospheric contamination. The observed ${}^{3}\text{He}/{}^{4}\text{He}$ ratios (1.6-2.6 R_A) demonstrate the presence of mantle-derived noble gases mixed in different proportions with radiogenic He produced in the adjacent Meso-Proterozoic craton.

The ultra-precise analysis of xenon isotopes by dynamic mass spectrometry done in Seltzer laboratory at WHOI [2] shows excesses of ¹²⁹Xe (¹²⁹Xe_{XS}) from extinct ¹²⁹I ($T_{1/2} = 16$ Ma) and ¹³¹⁻¹³⁶Xe from fission of either extinct ²⁴⁴Pu ($T_{1/2} = 82$ Ma) or extant ²³⁸U ($T_{1/2} = 4.45$ Ga). Two remarkable features emerge: (i) the (¹³⁶Xe/¹²⁹Xe)_{XS} ratio (where suffix XS refers to "excess" relative to atmospheric composition) is very similar to those of other CO₂-rich gases [3] and of MORBs [4]; (ii) The ¹³¹⁻¹³⁶Xe_{XS} spectrum points to ²³⁸U, and not ²⁴⁴Pu, being the fission progenitor, contrary to what has been advocated for MORBs and OIBs ([4] and refs. therein). These signatures represent processes that took place during Earth's early evolution, providing insight into the origin of terrestrial volatiles and mantle dynamics.

[1] Darling et al *GCA* **59**, 2501 (1995); [2] Seltzer and Bekaert, *IJMS*, **478**, 116873 (2022); [3] Bekaert D.V. et al Submitted; [4] Mukhopadhyay, S. & Parai, R. *AREPS* **47**, 389 (2019).