Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature?

CHLOÉ TRUONG1, SYLVAIN BERNARD2, PIERRE LE PAPE3, GUILLAUME MORIN4, AURÈRE GORLAS5 AND FRANÇOIS GUYOT6

1CNRS - IMPMC
2IMPMC CNRS/Sorbonne Université/MNHN
3IMPMC (CNRS-IRD-MNHN)
4Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 Sorbonne Université-CNRS-MNHN-IRD
5Institut de Biologie Intégrative de la Cellule, Université Paris Saclay - CNRS
6Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590

Presenting Author: chloe.truong1@mnhn.fr

Thermococcales, a major order of hyperthermophilic archaea inhabiting iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, are known to induce the formation of iron phosphates, greigite (Fe₃S₄) and abundant quantities of pyrite (FeS₂), including pyrite spherules [1]. Using X-ray diffraction, synchrotron-based X-ray absorption spectroscopy and scanning and transmission electron microscopies, we report the characterization of the pyrite crystals produced in the presence of Thermococcales. The pyrite spherules consist of an assemblage of ultra-small nanocrystals of a few ten nanometers in size, showing coherently diffracting domain sizes of few nanometers. Importantly, they sequester biogenic organic compounds in small but detectable quantities, typical of the functional groups measured in mineralization studies involving prokaryotes [2] [3]. In order to explore their use as biosignatures of hydrothermal microorganisms, we conducted experiments to test if similar pyrite spherules presenting the same crystallographic and organic compound features could form in hydrothermal abiotic conditions.