Atom Trap Trace Analysis of Cosmogenic ³⁹Ar in Geologic Materials

WILLIAM PAYTON GARDNER^{1,2}, YANNIS ARCK², DAVID WACHS², EMMY HIERONIMUS², MARKUS OBERTHALER² AND WERNER AESCHBACH²

¹University of Montana

²Heidelberg University

Presenting Author: payton.gardner@umontana.edu

We present results from investigations into measurement of cosmogenic production of ³⁹Ar in the mineral phase using Atom Trap Trace Analysis (ATTA). We report on the extraction and analysis of ³⁹Ar from mineral phase, and the comparison of measured and theoretical cosmogenic ³⁹Ar concentration. Methods for the extraction of purified ³⁹Ar from geologic materials including bulk soil, bulk rock and mineral separates are discussed and initial measurements from a sample of geologic materials are presented. Measurements are then compared to theoretical production and age estimated from other means to investigate sample age and/or Ar closure. Our results show that cosmogenic ³⁹Ar from geologic samples can be measured, but calculation of age requires improvement in calculation of production and closure. Until recently, measurement of ³⁹Ar in the mineral phase was not possible due to the large gas requirements for low-level counting. With the recent advent of ATTA measurement of ³⁹Ar, cosmogenic production of ³⁹Ar can be measured in the mineral phase for the first time. Cosmogenic production of ³⁹Ar in the mineral phase could provide a new technique for exposure dating at high temporal resolution, useful for constraining active geomorphic and anthropogenic processes at the Earth's surface with timescales between 100 and 3000 years.