Temporal changes of ²³⁵U/²³⁸U and ²³⁶U/²³⁸U isotopic ratios in Tokyo Bay from the 1960s to the 2000s

TAKESHI OHNO¹, AMI YOSHIDA¹, GOU KITAMURA¹, YUTA IJICHI² AND YUSUKE FUKAMI¹

¹Gakushuin University

²The University of Tokyo

Presenting Author: takeshi.ohno@gakushuin.ac.jp

Uranium in nature consists mainly of three radionuclides, which are a radiogenic isotope ²³⁴U and two primordial nuclides ²³⁵U and ²³⁸U. Among the three, ²³⁵U is a fissile isotope that has been used in nuclear bombs and nuclear reactors. When uranium is used for these purposes, 236 U is produced by both the 235 U (n, γ) ²³⁶U reaction and the ²³⁸U (n, 3n) ²³⁶U reaction. Because the amount of anthropogenic ²³⁶U is significantly larger than that of natural ²³⁶U, ²³⁶U/²³⁸U has been used as an environmental tracer to investigate the contamination of anthropogenic uranium released from nuclear weapons tests, fuel reprocessing, nuclear power plant accidents, and the decommissioning of nuclear power plants. In this study, we examined the temporal changes of ²³⁵U/²³⁸U and ²³⁶U/²³⁸U in sediment samples collected in Tokyo Bay and elucidated the anthropogenic sources of uranium in the 1960s-2000s. Uranium-236 was detected in samples deposited in the 1960s-2000s, and the $^{236}\mathrm{U}/^{238}\mathrm{U}$ ratio of the sediment core shows peak values in the 1970s. The ²³⁵U/²³⁸U isotopic ratios in samples deposited in the early 1960s are almost identical to that of natural uranium, implying that the ²³⁶U might have originated from global fallout. A decrease in ²³⁵U/²³⁸U was observed in the late 1960s-2000s, suggesting that depleted uranium from nuclear fuel reprocessing increased the ²³⁶U/²³⁸U ratios in the sediment. The ²³⁶U/²³⁸U values in sediments from the 1980s–2000s were lower than those in the 1970s but considerably higher than those in the 1960s, suggesting that the main source of depleted uranium still remain around Tokyo Bay. Our results demonstrated that the depleted uranium released in the 1970s should be considered as an important end-member when using uranium isotopic ratios as environmental tracers in closed aquatic environments around industrial cities.