Prolonged lifetime of particulatebound polycyclic aromatic hydrocarbons with coating of secondary aerosols during photochemical aging of biomass burning plumes

XINMING WANG¹, WEI DENG¹, YANLI ZHANG¹, ABDELWAHID MELLOUKI², YINON RUDICH³ AND CHRISTIAN GEORGE⁴

 ¹Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
²ICARE-CNRS
³Weizmann Institute
⁴CNRS, IRCELYON
⁴Presenting Author: wangxm@gig.ac.cn

Polycyclic aromatic hydrocarbons (PAHs), one class of most toxic compounds in atmosphere, showed much longer than predicted lifetimes in ambient air due to heterogeneous scavenging by ozone (O₃) according to previously studies. Here we show heterogeneous reactions with hydroxyl (OH) radical dominates far more over that with O₃ in the degradation of particle-bound PAHs based on chamber simulation on the evolution of plumes from biomass burning, the largest emitter of PAHs on a global scale. The evolution of crop straw burning fumes in a 30 m³ smog chamber revealed that for heterogeneous reactions of PAHs with OH, their second order degradation rate constants were estimated to be 4.4~8.6×10⁻¹² cm³ molecule⁻¹ s⁻¹ at the initial stage of photo-oxidation, and they dropped 4-5 times to to $1.1 \sim 1.7 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ after $1 \sim 5 \times 10^{11}$ molecule cm⁻³ s OH radical exposure, corresponding to a decrease of uptake coefficients of OH (γ_{OH}) from 2.2±0.9 to 0.5±0.1. The decrease of second order rate constants and γ_{OH} were mainly caused by the reduction in secondary chemistry and the burial effect of coatings by secondary organic/inorganic aerosols during the atmospheric oxidation. Moreover, the OH oxidation pathway $(1.1 \sim 1.7 \times 10^{-6} \text{ s}^{-1})$ dominates over ozonolysis pathway $(1.7 \sim 12.7 \times 10^{-7} \text{ s}^{-1})$ in heterogeneous degradation of PAHs. The lifetimes of particulate PAHs were estimated to be 93.5~219 h, approximately 120 times that obtained previously by exposing pure PAHs to oxidants, implying their stronger long-range transport and more persistent health risks.