Sulfur mass-independent fractionation in SO₂ photolysis: comparison between absorption spectra measurements and photolysis experiments of SO₂ - *GSJ Medal Lecture*

YOSHIAKI ENDO^{1,2}, SEBASTIAN OSCAR DANIELACHE³, MOEKO OGAWA⁴ AND YUICHIRO UENO⁵

¹Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

²Tokyo Institute of Technology

³Department of Materials and Life Science, Faculty of Science and Technology, Sophia University ⁴Sophia University

⁵JAMSTEC

Presenting Author: yoshiaki.endo0@gmail.com

Mass-independent fractionation of sulfur isotopes (MIF-S; non-zero Δ^{33} S values) in Archean sedimentary rocks will provide a hint of atmospheric composition at that time. However, the origin of MIF-S is still debated. SO₂ photolysis experiments produced large MIF-S signatures, and the results were highly sensitive to the experimental conditions [1]. Understanding the MIF-S mechanism in SO₂ photolysis is essential to explain the Archean MIF-S signatures quantitatively.

Isotope fractionation in SO₂ photolysis is predicted by absorption spectra of SO2 isotopologues. Here, we measured the photoabsorption cross-sections of ³²SO₂, ³³SO₂, ³⁴SO₂, and ³⁶SO₂ from 206 to 220 nm at 296 K [2]. The spectral resolution of the present study (~1 cm⁻¹) is 25 times higher than that of previous studies [3,4]. SO₂ exhibit complex ro-vibrational structures in their UV absorption spectrum; SO2's absorption causes MIF-S so-called "self-shielding" by slowing photolysis rate of only 32 SO₂, which is the most abundant isotopologue. Using our new spectra, we calculated the sulfur isotope fractionation for selfshielding during SO2 photolysis. The calculated fractionation factors are compared with isotope fractionation factors observed in previous SO₂ photolysis experiments. We discuss the link of MIF-S between photolysis experiments and spectroscopic measurements. Additionally, we introduce some advances in understanding MIF-S mechanisms and modeling Archean atmospheric chemistry after the paper [2] was published. We performed MIF-S in SO₂ photolysis experiments in lowtemperature/pressure atmospheres [5] and are developing a vertical atmospheric model with sulfur isotopes based on MIF-S observed in photolysis experiments. Finally, we summarize experimental and modeling studies of Archean MIF-S.

[1] Farquhar et al. (2001). J. Geophys. Res. 106(E12), 32829–32839.

[2] Endo et al. (2022). Geochem. J. 56(1), 40-56.

[3] Danielache et al. (2008). J. Geophys. Res. 113, D17314.

[4] Endo et al. (2015). J. Geophys. Res. Atmos. 120,