Prey and predators in the So'a Basin, Flores: Dietary reconstructions through Ca and Sr isotopes in fossil enamel of insular Pleistocene taxa from Indonesia

DAFNE KOUTAMANIS¹, DR. AUGUSTE HASSLER², THEO TACAIL³, IWAN KURNIAWAN⁴, UNGGUL PRASETYO WIBOWO⁵, JEREMY MARTIN⁶, VINCENT BALTER⁷, ANTHONY DOSSETO⁸, THOMAS SUTIKNA⁹ AND GERRIT VAN DEN BERGH¹⁰

¹IsoTropics Geochemistry Lab, James Cook Unversity
²École normale supérieure de Lyon
³University of Bristol
⁴Centre for Geological Survey, Geological Agency of Indonesia, Jl. Diponegoro No. 57, Bandung, 40122
⁵Museum Geologi, Geological Agency of Indonesia, Jl. Diponegoro No. 57, Bandung, 40122, Indonesia
⁶Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE
⁷Ecole Normale Supérieure de Lyon
⁸Wollongong Isotope Geochronology Laboratory. School of Earth, Atmospheric & Life Sciences. University of Wollongong
⁹9. Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong
¹⁰Centre for Archaeological Science, School of Earth, Atmospheric and Life Sciences. University of Wollongong

Presenting Author: dafne.koutamanis@jcu.edu.au

The Pleistocene fossil record of Flores, a small, oceanic island in the Indonesian archipelago, contains evidence of highly endemic species between \sim 1.4 Ma and the Late Pleistocene. An array of the endemic species displays insular dwarfism and gigantism, including giant species of rat, turtle, bird, and lizard (Komodo dragons), and small species, including pygmy elephants and a diminutive hominin (*Homo floresiensis*). Insular dwarfism and gigantism are hypothesized to be driven by increased food resource competition and reduced predation pressures, yet little is known about food web interactions of these taxa.

Here we conduct calcium ($\delta^{44/42}$ Ca) isotope analyses, as a trophic level proxy, combined with radiogenic strontium isotope analyses (87 Sr/ 86 Sr), to compare dietary and spatial niches, on fossil dental enamel from dominant terrestrial fauna from various Early to Middle Pleistocene sites from the So'a Basin, central Flores, which may have coexisted with *H. floresiensis*. Taxa include two predators - Komodo dragons (*Varanus komodiensis*) and crocodiles (undetermined Crocodilian species) – and three herbivores - pygmy elephants (*Stegodon sondaari*), a medium–sized elephant (*Stegodon florensis florensis*), and giant rats (*Hooijeromys nusatenggara*).

Preliminary Sr isotope compositions show insights into the roaming ranges of taxa. Calcium isotope compositions indicate varying diets between herbivore taxa and through time. Carnivore taxa have distinct Ca isotope compositions that may reflect niche partitioning. Reconstructions of these dietary behaviours reveal how various prey and predator species interacted, co-existed, and persisted throughout the Pleistocene on a small island with precarious conditions.