Fe behavior on the surface of early Mars: Insights from weathering Ferich olivine

YUYAN ZHAO¹, XIYU WANG², DI-SHENG ZHOU², XIAO-WEN YU², HONGLEI LIN³, SEN HU³, CHAO QI³, HUA-PEI WANG⁴, JUN-HU WANG⁵, YANGTING LIN³, XIONGYAO LI² AND JIANZHONG LIU²

¹Chengdu University of Technology

²Institute of Geochemistry Chinese Academy of Sciences

³Institute of Geology and Geophysics, Chinese Academy of Sciences

⁴China University of Geosciences (Wuhan)

⁵Dalian Institute of Chemical Physics, Chinese Academy of Sciences

Presenting Author: zhaoyuyan@cdut.edu.cn

Iron-rich olivine (Fe contents $\geq 20\%$) is widely distributed on Mars. However, the dissolution rates, weathering products, and particularly Fe behavior of Fe-rich olivine under Mars-relevant conditions are largely unconstrained.

We experimentally investigated the aqueous alterations of synthetic olivine with gradient Fe contents (Fa₁₀₀, Fa₇₁, Fa₅₀, and Fa₂₉). Synthetic forsterite (Fo) or natural terrestrial olivine (Fa₁₀) were also examined for comparison. Three Mars-related weathering scenarios were examined: (1) serpentinization (W/R = 5; 200°C, 15 MPa, 20 days); (2) aqueous alteration under a CO₂ atmosphere (W/R = 10, 45°C, 1 bar CO₂, 180 days); and (3) cryogenic sulfuric dissolution (233 K, H₂SO₄, 100 days). The products (solid, liquid and gas) were collected and analyzed for compositional, isotopic, spectral and magnetic characteristics.

The preliminary findings are: (1) during serpentinization, brucite was absent in all Fe-rich olivine experiments (from Fa₂₉ to Fa₁₀₀). Magnetite, talc (or minnesotaite) were present at early stages during serpentinization, as the majority of olivine samples remain unaltered. The initial Fa# values of olivine have a great influence on the fluid compositions and the D/H fractionations in the fluids and olivine rims. (2) Under CO₂ atmosphere, (hydro)magnesite was found only in the Fo experiments and carbonates were absent in all the Fe-rich olivine experiments. The mobility of Fe was relatively hindered compared to Mg and was primarily present as solid phases. Minor hematite and goethite were also found along with phyllosilicates in the Fa₁₀₀ and Fa₇₁ experiments, indicating anoxic Fe oxidation controlled by Fa# values and W/R ratios. (3) Under cryogenic sulfuric conditions, the primary alteration products of Fe-rich olivine are Fe(II)-Mg sulfates and amorphous silica with minor ferric sulfates and gypsum. The lifetime of Fe-rich olivine is two to three orders of magnitude shorter than that of Mg-rich San Carlos olivine. The freezing and acidic conditions greatly enhance Fe mobility and subsequent Fe cycling.

Fe-rich olivine weathering under relative water-limited conditions on the Martian surface suggest that primary controls on Fe behavior and weathering products are the physical and