Assessing groundwater time scales at and beyond ³⁶Cl/Cl using ⁸¹Kr and radiogenic noble gas isotopes in Australia.

AXEL O. SUCKOW¹, ALEC DESLANDES¹, CHRISTOPH GERBER¹, PUNJEHL CRANE¹, CORNELIA WILSKE¹, MATTHIAS RAIBER¹, GUO-MIN YANG², WEI JIANG² AND KARINA MEREDITH³

¹CSIRO

²Hefei National Laboratory, University of Science and Technology of China ³ANSTO

Presenting Author: axel.suckow@csiro.au

The arid and flat inland of Australia relies heavily on groundwater supplies with old groundwater beyond ¹⁴C the timescale. Appropriate for determining these timescales in groundwater is ³⁶Cl – a dating technique applied and developed in Australia. Difficulties with interpretation of ³⁶Cl/Cl relate to spatially variable initial values and unknown possible temporal variations of ³⁶Cl/Cl. For example, variations in Earth's magnetic field and paleoclimatic influences such as proximity to the coast affect initial values.

Since 2016 CSIRO Australia operates a facility to routinely measure noble gases, adding two further elements with radiogenic isotopes in this time range (⁴He and ⁴⁰Ar). Furthermore, applications of ⁸¹Kr become more and more routine at CSIRO since 2016, with samples taken and purified at CSIRO and measured in Hefei. The Australian ATTA facility at The University of Adelaide will soon also have capability for ⁸¹Kr. But for the near future, ³⁶Cl will be easier to sample and cheaper to analyse than ⁸¹Kr. Therefore, the present study evaluates whether the difficulties of ³⁶Cl can be mitigated calibrating it with the more reliable dating tracer ⁸¹Kr and whether the timescales of ⁸¹Kr and ³⁶Cl can be extended using the radiogenic noble gas concentrations and isotopes. Studies from CSIRO in the eastern Great Artesian Basin (GAB) and published studies in the western GAB resulted in a total of 49 existing samples combining ⁸¹Kr and ³⁶Cl. Most of these samples also include noble gas results. Therefore, this study addresses the question: Is it possible to calibrate the time dependent ³⁶Cl input with ⁸¹Kr, use both to get a better understanding of the sources of radiogenic isotopes and finally, possibly extend the groundwater timescales with helium and argon?

Regional differences in initial ³⁶Cl/Cl over Australia found in several studies – with and without ⁸¹Kr – will be presented. The comparison between ⁸¹Kr and ³⁶Cl suggests time variation in the ³⁶Cl/Cl input, with a peak in ³⁶Cl/Cl at ⁸¹Kr activities of 70-90pmKr. Our first analyses of radiogenic ⁴⁰Ar in groundwaters, for which ³⁶Cl is at natural equilibrium, point towards a mechanism of sediment-stored radiogenic argon released into these groundwaters.