Chlorine isotope heterogeneity in the convecting mantle from deeply subducted lithosphere

GEORGE SEGEE-WRIGHT¹, JAIME D. BARNES¹, JOHN C. LASSITER¹ AND DR. ANNE-SOPHIE BOUVIER²

¹The University of Texas at Austin

²University of Lausanne

Presenting Author: ghs562@utexas.edu

Subduction of volatile-bearing lithosphere into the mantle can affect the chlorine isotope composition (δ^{37} Cl) of the convecting upper mantle. Previous studies have examined the δ^{37} Cl values of mantle-derived mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) glasses, but large inter-study discrepancies and a paucity of data have prevented a consensus on the δ^{37} Cl values of different chemical reservoirs in the mantle. We measured the δ^{37} Cl values of basaltic glasses via SIMS from well-studied HIMU and EM OIB suites that sample deeply subducted lithosphere, as well as MORB, to determine the extent and source of subduction-derived δ^{37} Cl heterogeneity in the convecting mantle. We also measured the oxygen (δ^{18} O) and boron (δ^{11} B) isotope compositions of these glasses via SIMS to constrain assimilation of seawater-altered material.

HIMU δ^{37} Cl values range from -2.7‰ to +1.5‰ (±0.5‰, average 2SE), consistent with previously published data, but extending to higher and lower δ^{37} Cl values. This δ^{37} Cl range is similar to the range observed in altered oceanic crust (AOC), supporting the argument that the HIMU mantle source contains deeply subducted AOC. EM δ^{37} Cl values range from +0.7‰ to +2.8‰ (±0.4‰, average 2SE), significantly higher than estimates of depleted MORB-source mantle (DMM) δ^{37} Cl values. These 37 Cl-enriched values are higher than subducted sediments, indicating either an additional subducted source of Cl in the EM mantle or isotopic fractionation of Cl during subduction.

MORB δ^{37} Cl values range from -0.9‰ to +0.7‰ (±0.3‰, average 2SE). MORB samples with Cl/K>0.1 extend to the lowest δ^{37} Cl values, consistent with assimilation of lowtemperature fluids or altered crust prior to eruption. For samples without signs of assimilation, the average δ^{37} Cl value ≈ 0.3 ‰. However, there are strong correlations between Mid-Atlantic Ridge (MAR) MORB δ^{37} Cl values and element ratios (e.g. K₂O/TiO₂) and radiogenic isotope ratios (e.g. ¹⁴³Nd/¹⁴⁴Nd). The most depleted MORB samples have δ^{37} Cl values \approx -0.3‰, similar to previous DMM δ^{37} Cl value estimates. The most enriched MORB samples have δ^{37} Cl>0.7‰, indicative of higher δ^{37} Cl values due to a subducted crustal component. This work indicates that subducted lithosphere can introduce significant Cl isotope heterogeneity to the DMM as well as deep mantle plume sources.