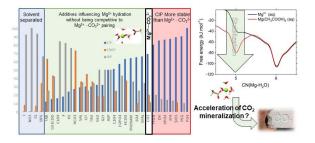
Revealing the elementary processes controlling the conversion of CO₂ to MgCO₃

DEVIS DI TOMMASO, DIMITRIOS TOROZ AND GREGORY A. CHASS

Queen Mary University of London


Presenting Author: d.ditommaso@qmul.ac.uk

Formed via aqueous carbonation of Mg^{2+} ions, the crystallization of magnesite (MgCO₃) is a promising route to carbon capture and reuse, albeit limited by the slow precipitation of MgCO₃. Although MgCO₃ is naturally abundant, forming at low temperature conditions, its industrial production is an energy-intensive process due to the temperatures required to prevent the formation of hydrated phases. The principal difficulty in aqueous conditions arises from the very strong Mg²⁺...H₂O interaction, with high barriers to Mg²⁺ dehydration. We present a theoretical investigation of the influence of thirty additive anions $(X^{n-}, n = 1-3)$, ranging from simple halides to more complex molecules, on the first two steps of MgCO₃ aggregation from solution: Mg2+ dehydration and subsequent pre-nucleative Mg^{2+} ... CO_3^{2-} pairing [1]. We computed the thermodynamic stability of solvent shared ion pairs $(Mg^{2+}...H_2O...X^{n-})$ and contact ion pairs $(Mg^{2+} \cdots X^{n-})$ to reveal the propensity of additives to inhibit or promote Mg²⁺...CO₃²⁻ formation. We determined the stabilization of undercoordinated hydrated Mg2+ states with a vacant coordination site to which CO₃²⁻ can bind, subsequently initiating MgCO₃ nucleation or Mg²⁺ incorporation into the crystal lattice. While in pure liquid water $Mg(H_2O)_6^{2+}$ is the only stable coordination state, anions may stabilise undercoordinated five-hydration configurations [2]. Extensive simulations of electrolyte solutions containing Na2CO3 with different sources of Mg2+ (i.e., MgCl2, MgSO4 and $Mg(CH_3COO)_2$), further show that the degree of dehydration of Mg²⁺ and the structure of prenucleation MgCO₃ clusters changes depending on counterion identity. The solution composition can lower the barrier to Mg2+ dehydration and subsequent incorporation into the lattice of Mg-carbonates, promoting lowtemperature crystallisation Through a fundamental understanding of the role of solution additives in the Mg²⁺ dehydration, our results help to rationalize previously reported experimental observation of the effect of solvation environments on the growth of magnesite [3]. This understanding may contribute to identifying solution composition promoting low-temperature CO₂ conversion into MgCO₃.

[1] Toroz, Song, Uddin, Chass & Di Tommaso (2021), *Cryst. Growth Des.* 22, 3080-3089

[2] Toroz, Chass & Di Tommaso (2021), CrystEngComm 23, 4896-4900.

[3] Power, Kenward, Dipple & Raudsepp (2017), Cryst. Growth Des. 17, 5652-5659.

