Foraminiferal boron isotope proxy for pH/atmospheric CO₂ reconstructions: evolving updates and new data

ELENI ANAGNOSTOU¹, TALI LEA BABILA², THOMAS B CHALK³, MICHAEL J. HENEHAN⁴, SONAL KHANOLKAR¹, BLANCA AUSIN⁵ AND THOMAS WESTERHOLD⁶

¹GEOMAR Helmholtz Centre for Ocean Research Kiel
²University of Southampton
³CEREGE
⁴University of Bristol
⁵Salamanca University
⁶University of Bremen

Presenting Author: eanagnostou@geomar.de

Atmospheric carbon dioxide (CO₂) is a key environmental unknown of the geological past, but it directly links to our ability to understand Earth's climate sensitivity and the future trajectory of anthropogenic climate change. The boron isotope (δ^{11} B) proxy is one of the most reliable for past CO₂ reconstructions[1]. Over the past 1.5 years we have been leading an effort to align the international δ^{11} B community and develop consensus of best practices for analytical methods, data processing and utilization guidelines. Here we will summarize our key conclusions and present our evolving synthesis of δ^{11} B derived, seawater pH and atmospheric CO₂ over the Phanerozoic, with implications for long term and short term carbon-climate links. In light of the current developments with the δ^{11} B proxy, new data from the late Eocene and Oligocene will be discussed. This work is partly supported by PAGES.

[1] IPCC, 2021: WG I, AR6, Cambridge University Press.