Uranium isotope fractionation in the Paleoproterozoic ocean: A multi-core study of the Rove and Virginia Formations, Superior Province, North America

ALEXANDRA KUNERT¹, SIMON W. POULTON², DONALD E. CANFIELD³, PHILIP W. FRALICK⁴ AND BRIAN KENDALL¹

¹University of Waterloo

²University of Leeds

³Department of Biology and Nordcee, University of Southern Denmark

⁴Lakehead University

Presenting Author: akunert@uwaterloo.ca

The uranium isotope system is commonly used for reconstructing Phanerozoic and Proterozoic global ocean redox conditions. In non-euxinic settings, sedimentary δ^{238} U (Equation 1) is closer to coeval seawater (δ^{238} U_{sw}) whereas reduction and burial of isotopically heavy U in euxinic settings produces black shales with significantly higher δ^{238} U than δ^{238} U_{sw}. Areas where U reduction occurs are limited in the modern ocean, thus, modern δ^{238} U_{sw} (–0.4‰) is not significantly lower than continental input (–0.3‰). In widely anoxic oceans, global δ^{238} U_{sw} should be lower. Recently, Proterozoic application of this proxy has been questioned because other geochemical data suggest largely anoxic deep oceans, but δ^{238} U in some Proterozoic carbonates approach continental inputs, suggesting different and/or muted U isotope fractionation mechanism(s) compared to the present.

To better understand U isotope behavior in the Paleoproterozoic oceans, we present U isotope data from black shales of the ~1.83 Ga Rove/Virginia formations from four locations in the Animikie Basin. The shales have a wide range of δ^{238} U (-0.45‰ to +0.43‰). Generally, δ^{238} U correlates positively with local redox indicators (e.g., Fe speciation, U, V, Mo, Re, organic carbon). Euxinic samples record the highest δ^{238} U (0.08 ± 0.14‰), whereas ferruginous (-0.06 ± 0.10‰) and non-anoxic samples have lower δ^{238} U (-0.24 ± 0.15‰) (Figure 1), consistent with modern U isotope systematics. We estimate that $\delta^{238}U_{ew}$ was between -0.8‰ and -0.4‰ using the above average δ^{238} U values and sediment-seawater offsets of 0.6–0.8‰ and <0.4‰ in locally euxinic and ferruginous environments, respectively, as observed in modern settings. In one core interval, higher δ^{238} U (0.28 ± 0.14‰) may have been produced by dynamic redox conditions, a phenomenon also observed in Recent organic-rich sediments. A seawater-sediment isotope offset in these environments closer to the theoretical maximum of 1.2‰ gives a δ^{238} U_{sw} estimate from the dynamic Rove interval that aligns with the low end of the aforementioned range of $\delta^{238}U_{sw}$. We conclude that at least some U isotope fractionation mechanisms observed today occurred in the Paleoproterozoic

oceans and that global ocean redox models using U isotopes should consider large fractionations in dynamic redox environments.

Equation 1

$$\delta^{238} \mathrm{U}(\%_{0}) = \left(\frac{{}^{238} \mathrm{U}/{}^{235} \mathrm{U}_{\mathrm{sample}}}{{}^{238} \mathrm{U}/{}^{235} \mathrm{U}_{\mathrm{CRM145}}} - 1\right) \times 1000$$

Figure 1. Distribution of uranium isotope compositions in sediments (δ^{238} U_{sediment}) of the Rove and Virginia formations deposited under various redox conditions (defined by Fe speciation). A 'dynamic' interval spanning 30 cm in one core contains samples of non-anoxic, ferruginous, and euxinic deposition, and typically records higher δ^{238} U_{sediment} than other intervals.