Equilibrium europium isotope fractionation in igneous and metamorphic systems

EDWIN A. SCHAUBLE

UCLA

Presenting Author: schauble@ucla.edu

Nuclear volume and mass-dependent isotope fractionations of europium isotopes are estimated using data from Mössbauer spectroscopy, NRIXS spectroscopy, and electronic structure calculations. The results indicate that Eu²⁺-bearing species will have approximately 1‰ higher ¹⁵³Eu/¹⁵¹Eu than Eu³⁺-bearing species in equilibrium at 25°C (298 K), and about 0.3‰ higher ¹⁵³Eu/¹⁵¹Eu at 700°C (973 K). The nuclear volume effect goes in the opposite direction from mass-dependent fractionation, and is predicted to dominate over mass dependent fractionation for most materials, especially at metamorphic and igneous temperatures. ¹⁵³Eu/¹⁵¹Eu fractionation appears to be primarily dependent on the oxidation state of europium. Estimated nuclearvolume dominated fractionations favoring high ¹⁵³Eu/¹⁵¹Eu in minerals that preferentially incorporate Eu²⁺, such as plagioclase, are broadly consistent with recent measurements on igneous rocks showing low ¹⁵³Eu/¹⁵¹Eu in samples with strongly negative europium anomalies [1]. Plagioclase-melt fractionation is predicted to be most pronounced at intermediate oxygen fugacities, where Eu^{3+} is the main oxidation state in the melt or bulk rock but plagioclase mostly incorporates Eu²⁺. The results are also consistent with the recent finding that equilibrium fractionation cannot explain cosmochemical REE fractionations observed in primitive meteoritical materials [2], because inclusion of the nuclear volume effect still yields net fractionations that are too small (~0.2‰ or less) at temperatures >1200 K where vapor-phase REE species are relevant. Similar techniques applied to estimate nuclear volume fractionation for ¹⁴²Ce/¹⁴⁰Ce in Ce⁴⁺ vs. Ce³⁺ equilibria indicate that this effect nearly cancels the mass-dependent fractionation, leading to a muted overall fractionation. However, the isotope pairs ¹⁴⁰Ce/¹³⁸Ce and ¹⁴⁰Ce/¹³⁶Ce are expected to show dominantly mass-dependent fractionation, favoring more massive isotopes in Ce⁴⁺-bearing species.

[1] Lee S-G and Tanaka T (2021) Geochemical Journal 55:e9e17.

[2] Hu JY, et al. (2021) Science Advances 7:eabc2962.