Synchronous co-located S and Cl isotope ratio measurements in lunar meteorite and Apollo apatites

RITA ECONOMOS1, KATELYN LEHMAN FRANCO1, CAROLYN A. CROW2, TIMMONS ERICKSON3, ELIZABETH BELL4 AND ERIN SUMMERLIN-DONOFRIO1

1Southern Methodist University
2University of Colorado Boulder
3Jacobs - JETS, Astromaterials Research and Exploration Science Division, NASA Johnson Space Center
4Dept. of Earth, Planetary, and Space Sciences, UCLA

Presenting Author: reconomos@smu.edu

Lunar apatites have long interested planetary scientists due to the large positive Cl isotopic fractionations in some samples, up to +81‰[1,2,3]. Lunar apatites are typically low in sulfur, which is predicted by apatite’s strong partitioning preference for sulfate over sulfide and the low oxygen fugacity of the moon. Synchronous S and Cl isotope ratio measurements via CAMECA1300 secondary ionization mass spectrometer at UCLA allow for high-sensitivity monitoring of sulfur concentrations in lunar apatites during Cl isotope analysis. Through this method, we have collected S+Cl counts per second data for 10 meteoritic and 20 Apollo 14 apatites, which allows us to calculate S concentrations via an RSF using terrestrial standard apatites[4]. Six lunar meteorite apatites and 1 Apollo apatite contained enough S to yield accurate δ^{32}S/δ^{34}S isotopic ratios, including multiple grains large enough for replicate analyses.

All meteorite apatites were analyzed from thick sections of NWA12593, a clast-rich fragmental breccia known for its abundance of accessory phases. Six apatite grains were located within a fe-olivine-dominated symplectite clast. δ^{37}Cl of these apatites cluster between +15-+19‰. δ^{34}S isotope ratios of these spots range between -2.5 to 6‰. Two other matrix grains (outside of the symplectite clast) yield: δ^{37}Cl = 26.7‰, δ^{34}S = 10.65‰ and δ^{37}Cl = 16‰, δ^{34}S = -0.3 – 3.7‰. One Apollo apatite yielded a δ^{34}S of 8.2‰ but did not have enough Cl for an isotopic measurement. However, this grain should not be subject to potential terrestrial contamination observed in meteorites[5], thus it assists in the assessment of the fidelity of the meteorite record.

These data represent the first strongly positive S isotopic fractionations identified in lunar samples and the first not directly attributable to syn-eruption degassing[6].