Provenance and Diagenesis of Martian Sedimentary Rocks in the Jezero Crater Delta Front from Microscale Observations by the Mars 2020 PIXL Instrument

JOEL HUROWITZ¹, MICHAEL M. TICE², ABIGAIL ALLWOOD³, MORGAN CABLE³, TANJA BOSAK⁴, ADRIAN BROZ⁵, GWÉNAËL CARAVACA⁶, BEN C. CLARK⁷, ERWIN DEHOUCK⁸, ALBERTO G FAIREN⁹, FELIPE GOMEZ¹⁰, JOHN P. GROTZINGER¹¹, SANJEEV GUPTA¹², JEFFREY R JOHNSON¹³, LINDA C. KAH¹⁴, HEMANI KALUCHA¹¹, JOSH LABRIE¹⁵, AN Y LI¹⁶, LUCIA MANDON¹¹, JORGE NÚÑEZ¹³, DAVID ARGE KLEVANG PEDERSEN¹⁷, FRANCOIS POULET¹⁸, NICOLAS RANDAZZO¹⁹, EVA L SCHELLER⁴, MARIEK SCHMIDT¹⁵, DAVID L. SHUSTER²⁰, KIRSTEN SIEBACH²¹, SANDRA SILJESTRÖM²², JUSTIN I. SIMON²³, NICHOLAS J. TOSCA²⁴, ALLAN TREIMAN²⁵, SCOTT J VANBOMMEL²⁶, LAWRENCE A WADE³, KENNETH H WILLIFORD²⁷ AND ANASTASIA YANCHILINA²⁸

¹Stony Brook University

²Texas A&M University

³NASA-Jet Propulsion Laboratory

⁴Massachusetts Institute of Technology

⁵University Oregon

⁶IRAP

⁷Space Science Institute

⁸LGL-TPE (Univ. Lyon 1 / CNRS)

⁹Cornell University

¹⁰Centro De Astrobiologia

¹¹California Institute of Technology

¹²Imperial College London

¹³JHU APL

¹⁴University of Tennessee

¹⁵Brock University

¹⁶University of Washington

¹⁷Technical University of Denmark

¹⁸Universite Paris Saclay

¹⁹University of Alberta

²⁰University of California, Berkeley

²¹Rice University

²²RISE Research Institutes of Sweden

²³NASA Johnson Space Center

²⁴University of Cambridge

²⁵Lunar and Planetary Institute

²⁶Washington University in Saint Louis

²⁷Blue Marble Space Science Institute

²⁸Impossible Sensing, LLC.

Presenting Author: joel.hurowitz@stonybrook.edu

On ~sol 370 of the *Perseverance* rover mission, the Mars 2020 Science Team completed its investigation of igneous units of the Jezero crater floor [1] and directed *Perseverance* to drive towards the topographic scarp that marks the interface between the crater floor and Jezero's western delta. The "Delta Front Campaign" consisted of close-up investigation and sampling of lithologies located there.

Here, we report on the major findings relevant to the provenance and diagenetic history of these lithologies deduced from measurements made by the Planetary Instrument for X-ray Lithochemistry (PIXL), a micro-focus X-ray fluorescence (XRF) microscope [2]. Data were collected from the Shenandoah formation at two stratigraphic sections: Cape Nukshak and Hawksbill Gap [3].

Sediment provenance ranges from relatively homogeneous, altered olivine-dominated sources at the base of the section at Cape Nukshak in the Amalik member, to highly heterogeneous and altered (likely serpentinized) mafic to ultramafic sources at the top of the section at Hawksbill Gap in the Rockytop member. The presence of Fe-bearing carbonate at both locations indicates precipitation from anoxic, alkaline waters of moderate pH. The Yori Pass member (Cape Nukshak), and the Hogwallow Flats and Devils Tanyard members (Hawksbill Gap) contain abundant Fe-Mg sulfates and phyllosilicates, with compositions that indicate at least one period of deposition under anoxic, hypersaline conditions. The preservation of the Fe-Mg sulfate component of these rocks is remarkable, given its extreme solubility and susceptibility to oxidation. Fluids that precipitated later cross-cutting anhydrite apparently had little effect on rock bulk compositions. At present, it is uncertain whether observed evidence for oxidation, including ferric-sulfate, results from ~syn-depositional variability in atmospheric and aquatic redox state, or later diagenesis or weathering. A major finding of this investigation is that the Shenandoah formation contains compositionally and mineralogically diverse sedimentary rocks, which bodes well for sample return science, and indicates that paleo-environmental conditions were variable in space and/or time during delta deposition and diagenesis.

References: [1] Farley, K. et al. (2022) *Science*, *377* [2] Allwood, A. et al. (2020) *Space Sci. Rev.*, *216* [3] Stack K. et al. *LPSC 2023*.